{"id":401378,"date":"2024-10-20T04:56:03","date_gmt":"2024-10-20T04:56:03","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bsi-pd-iec-ts-62600-2022022\/"},"modified":"2024-10-26T08:43:39","modified_gmt":"2024-10-26T08:43:39","slug":"bsi-pd-iec-ts-62600-2022022","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bsi-pd-iec-ts-62600-2022022\/","title":{"rendered":"BSI PD IEC TS 62600-202:2022"},"content":{"rendered":"
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
2<\/td>\n | undefined <\/td>\n<\/tr>\n | ||||||
4<\/td>\n | CONTENTS <\/td>\n<\/tr>\n | ||||||
8<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
10<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | 1 Scope 2 Normative references <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | 3 Terms and definitions <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | 4 Symbols and abbreviated terms 5 Staged development approach 5.1 General <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | Tables Table 1 \u2013 Staged development approach <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 5.2 Stage 1 5.2.1 Scope 5.2.2 Stage gate <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 5.3 Stage 2 5.3.1 Scope 5.3.2 Stage gate <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | 5.4 Stage 3 5.4.1 Scope 5.4.2 Stage gate <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | 6 Test planning 6.1 TEC similitudes 6.1.1 General <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | 6.1.2 Reynolds scaling Table 2 \u2013 Scaling considerations <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | Figures Figure 1 \u2013 Power and drag (thrust) coefficients for the US Department of Energy\u2019s Reference Model vertical-axis cross-flow turbine (RM2) tested in a towing tank (Bachant et al. 2016) Figure 2 \u2013 Effect of Reynolds number on performance \u2013 Power (left) and thrust (right) coefficient for reference model RM2 at \u03bb = 3,1 plotted versus turbine diameter and approximate average turbine blade root chord Reynolds number (Bachant et al. 2016) Figure 3 \u2013 Effect of Reynolds number on performance \u2013 Power coefficient versus tip speed ratio (left) and power coefficient at \u03bb = 1,9 plotted versus turbine diameter and approximate average turbine blade root chord Reynolds number (right), both for UNH-RVAT turbine (Bachant and Wosnik 2016) <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 6.1.3 Temperature and salinity effects on Reynolds number 6.2 Power take off (PTO) similitude 6.3 Design statement <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | 6.4 Facility selection and outline plan 6.4.1 General 6.4.2 Stage 1 and Stage 2 <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | 6.4.3 Stage 3 <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 6.5 Physical model considerations 6.5.1 General 6.5.2 Stage 1 <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 6.5.3 Stage 2 6.5.4 Stage 3 6.5.5 Methods for applying torque <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | 6.5.6 Methods for controlling angular velocity 6.6 Additional test procedures 6.6.1 Dry run 6.6.2 Natural frequency 6.7 Uncertainties and repeat tests <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | 7 Reporting requirements 7.1 Overview 7.2 General 7.3 Test conditions and goals 7.3.1 General 7.3.2 Facility selection report <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | 7.3.3 Physical model report 7.3.4 Measurement procedure report 7.4 Presentation of results <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | 8 Data acquisition 8.1 Signal conditioning Table 3 \u2013 Presentation of continuously measured indicators Table 4 \u2013 Presentation of discrete measured indicators <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | 8.2 Sample rate 8.3 Analogue to digital conversion and DAQ system 8.4 Frequency response 8.5 Data synchronization <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | 8.6 Data recording 8.7 Recording of supplementary test data 8.8 Calibration factors\/Physical units 8.9 Instrument response functions 8.10 Health monitoring and verification of signals <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | 8.11 Special data acquisition requirements for Stage 3 open ocean trials 9 Testing environment characterization 9.1 General 9.2 Environmental measurements <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | 9.3 Inflow\/ Onset velocity 9.3.1 General Table 5 \u2013 Environmental measurements <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | 9.3.2 Inferred inflow velocity 9.3.3 Point measurement 9.4 Velocity shear profile 9.4.1 General 9.4.2 Measuring a velocity shear profile <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | 9.4.3 Presenting velocity shear profile 9.5 Wave climate 9.5.1 General Table 6 \u2013 Instruments suitability for velocity profiling <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | 9.5.2 Measuring waves 9.6 Turbulence 9.6.1 General 9.6.2 Turbulence intensity Table 7 \u2013 Environmental performance indicators <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | 9.6.3 Integral length and time scales 9.6.4 Other considerations 9.7 Temperature, salinity, density and viscosity 10 Turbine rotor performance characterization 10.1 Testing goals <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | 10.2 Performance indicators 10.2.1 General 10.2.2 Power, torque and angular velocity 10.2.3 Turbine rotor drag (thrust) 10.3 Non-dimensional performance indicators 10.3.1 General 10.3.2 Torque performance characterization 10.3.3 Power performance characterization <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | 10.3.4 Thrust performance characterization 10.3.5 Presentation of non-dimensional results 11 Motions and loads under operational conditions 11.1 Testing goals 11.2 Testing similitude <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | 11.3 Platform motions Table 8 \u2013 Geometric similitude requirements (operational environments) Table 9 \u2013 Structural similitude requirements (operational environments) <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | 11.4 Local loads, cross-sectional loads and mooring or global loads Table 10 \u2013 Kinematic signal measurements (operational environments) <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | 11.5 Test conditions 11.5.1 Stage 1 and 2 Table 11 \u2013 Dynamic signal measurements (operational environments) <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | 11.5.2 Stage 3 11.5.3 Fatigue measures 12 Motions and loads under survival conditions 12.1 Testing goals Table 12 \u2013 Current parameters for kinematics and dynamics testing (operational conditions) <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | 12.2 Testing similitude Table 13 \u2013 Geometric similitude requirements (survival environments) <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | 12.3 Signal measurements 12.4 Environmental Input parameters 12.4.1 General 12.4.2 Stage 1 and 2 Table 14 \u2013 Structural similitude requirements (survival environments) <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | 12.4.3 Stage 3 12.5 Performance indicators 13 Testing of arrays <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | Annex A (informative)Stage gates A.1 General A.2 Design statements A.3 Stage gate criteria <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | A.4 Uncertainty factors A.5 Third party review <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | Annex B (informative)Device type B.1 General B.2 Axial flow turbines B.3 Cross-flow turbines <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | B.4 Hydrofoil devices B.5 Other B.5.1 Ducted devices B.5.2 Oscillating devices B.5.3 Underwater kites <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | Annex C (informative)Facilities selection C.1 General C.2 Towing tank C.3 Re-circulating water channel\/flume Table C.1 \u2013 Pros and cons of testing in towing tanks <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | C.4 Open water push test C.5 Tidal test site Table C.2 \u2013 Pros and cons of testing in recirculating water channels\/flumes Table C.3 \u2013 Pros and cons of open water push tests <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | C.6 Cavitation tunnel C.7 Other facilities C.7.1 General C.7.2 Other specialized basins and tanks C.7.3 Wind tunnel C.7.4 Rotating arm facility C.8 Facilities comparison Table C.4 \u2013 Pros and cons of testing at tidal test sites <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | Table C.5 \u2013 Comparison of facilities <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | Annex D (informative)Instruments D.1 General D.2 Flow characteristics D.2.1 General D.2.2 Acoustic techniques D.2.3 Optical techniques <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | D.2.4 Other techniques D.3 Wave measurement D.4 Structural characteristics D.5 Measurement and control of turbine shaft angular velocity <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | D.6 Measuring torque D.7 Measuring thrust D.8 Mooring force measurement D.9 Model motion D.9.1 Optical multi camera six degree of freedom measurement system <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | D.9.2 Gyroscope, accelerometer, compass, GPS <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Marine energy. Wave, tidal and other water current converters – Early stage development of tidal energy converters. Best practices and recommended procedures for the testing of pre-prototype scale devices<\/b><\/p>\n |