{"id":82318,"date":"2024-10-18T03:03:59","date_gmt":"2024-10-18T03:03:59","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/ieee-367-1988\/"},"modified":"2024-10-24T19:49:48","modified_gmt":"2024-10-24T19:49:48","slug":"ieee-367-1988","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/ieee\/ieee-367-1988\/","title":{"rendered":"IEEE 367 1988"},"content":{"rendered":"
Revision Standard – Inactive – Superseded. Superseded by IEEE Std 367-1996. Guidance is provided for the calculation of interfering voltages and their appropriate reduction from worst-case values for use in wire-line telecommunication protection design. Information is also included for the determination of the fault current and earth-return current levels; their probability, waveform, and duration; and the impedance to remote earthing points used in these ground potential rise (GPR) and longitudinally induced voltage calculations. The zone of influence of the power station GPR; the calculation of the inducing currents; the mutual impedance between power and wire-line telecommunication facilities and shield factors; and the channel time requirements for wire-line telecommunication facilities where noninterruptible channels are required for protective relaying and other purposes are covered.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
10<\/td>\n | Example 2: Nonuniform Exposure Mutual Reactance of Ground-Return Circuits in SI Units <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | 1 Scope <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 2 Introduction Wire-Line Telecommunication Circuits Faults on Power Systems <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | Power Station Ground Impedance to Remote Earth <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | Establishing Net Fault Current Values Division of Fault Current <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | Calculating the Inducing Current Ground Potential Rise (GPR) Telecommunication Utilities <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | Transient Voltages Resulting from Power System Operation Utilities <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | Defined in ANSI\/IEEE Std 487-1980 [51 Summary of Introduction <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 3 Definitions <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | 4 References <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 5 Electric Power Station Ground Potential Rise (GPR) 5.1 Statement of the Problem Determination of Appropriate Symmetrical GPR <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | GroundSource <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | L-G and Three-phase Fault Simulation <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | Circuit for Total Zero-Sequence Current (31AOT) Reduction Power Line Shielding <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | Circuit for L-G and Three-phase Fault Analysis <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | Complete Faulted Circuit <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | Fig <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | R-O-W 1 Conductor Configuration Fig <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | 230kVBusFault 44 kV Bus Fault Fig <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | Protection <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | 230 kV Bus Fault Fig <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | Fig <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | A Sample Computer Program Output Fig <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | Left Station Potential Versus Tower Numbers Fig <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | Fig <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | 5.4 Extraordinary Possibilities Fig <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | Example of GPR Calculations and Volt Time Area Calculation Fig <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | Current Curve and Determination of Area No 1 Current Curve and Determination of Area No 2 Current Curve and Determination of Area No 3 <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | Graphical Representations of Peak Currents <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | Current B Current BCurrent Determination of Area No 3 for Initial Phase B Current Determination of Area No 4 for Initial Phase B Current Current Current <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | 5.6 Summary Area No Total Current for an Evolving Fault <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | Combined Relative Wave Forms <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | Conditions 6.1 Statement of the Problem 6.2 Introduction <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | 6.3 General <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | General Configuration for Mutual Impedance <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | Example 1: Uniform Exposure <\/td>\n<\/tr>\n | ||||||
73<\/td>\n | Illustration for Example <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | Evaluation of Mutual Impedance Mutual Resistance of Ground-Return Circuits <\/td>\n<\/tr>\n | ||||||
76<\/td>\n | Mutual Reactance of Ground-Return Circuits <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | Mutual Impedance of Ground-Return Circuits <\/td>\n<\/tr>\n | ||||||
78<\/td>\n | Calculation of Mutual Impedance (Per Unit Length) Mutual Resistance of Ground-Return Circuits in SI Units <\/td>\n<\/tr>\n | ||||||
80<\/td>\n | Mutual Impedance of Ground-Return Circuits in SI Units <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | Inductive Exposure for Example Earth Resistivity <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | Converging Inductive Exposure Diverging Inductive Exposure <\/td>\n<\/tr>\n | ||||||
83<\/td>\n | Curves Correction for Difference in Line Heights <\/td>\n<\/tr>\n | ||||||
84<\/td>\n | Example of Calculations for Part <\/td>\n<\/tr>\n | ||||||
85<\/td>\n | Table 3 Example of Calculations for Part I1 <\/td>\n<\/tr>\n | ||||||
86<\/td>\n | Electric Supply Line with Double-End Feed Fault Location for Maximum Induced Voltage and2 <\/td>\n<\/tr>\n | ||||||
87<\/td>\n | Correction Factors for Difference in Line Heights Fig <\/td>\n<\/tr>\n | ||||||
88<\/td>\n | Shield Factor for Example <\/td>\n<\/tr>\n | ||||||
91<\/td>\n | Shield Factors for Supply Line with Overhead Ground Wires <\/td>\n<\/tr>\n | ||||||
92<\/td>\n | Table 5 Shield Factors for Alpeth Communications Cable Table 6 Shield Factors for Stalpeth Communications Cable Shield Factors for Tape Armored Communications Cable <\/td>\n<\/tr>\n | ||||||
93<\/td>\n | Typical Supply Line Fault Current Distribution Telecommunication Cable with Continuous Leakage <\/td>\n<\/tr>\n | ||||||
94<\/td>\n | Faults <\/td>\n<\/tr>\n | ||||||
95<\/td>\n | Example <\/td>\n<\/tr>\n | ||||||
100<\/td>\n | with a Longitudinally Induced Voltage 7.1 Statement of Problem 7.2 General <\/td>\n<\/tr>\n | ||||||
101<\/td>\n | Illustrations for Examples 1 and Fig <\/td>\n<\/tr>\n | ||||||
102<\/td>\n | 7.3 Example 1: Symmetrical Fault Current <\/td>\n<\/tr>\n | ||||||
103<\/td>\n | 7.4 Example 2: Asymmetrical Fault Current <\/td>\n<\/tr>\n | ||||||
106<\/td>\n | 8 Power System Fault Current Probability 8.1 General 8.2 Probability Analysis <\/td>\n<\/tr>\n | ||||||
108<\/td>\n | 9 Zone of Influence of Ground Potential Rise (GPR) 9.1 Conductive Interference 9.2 Equipotential Lines <\/td>\n<\/tr>\n | ||||||
109<\/td>\n | Zone of Influence of GPR and its Distribution Fig <\/td>\n<\/tr>\n | ||||||
111<\/td>\n | Boundary of the GPR Zone of Influence Fig <\/td>\n<\/tr>\n | ||||||
112<\/td>\n | 9.3 Potential Contour Surveys <\/td>\n<\/tr>\n | ||||||
113<\/td>\n | The DC Transient Component <\/td>\n<\/tr>\n | ||||||
114<\/td>\n | The Effects of GPR Within the Zone of Influence The Transfer of a GPR Electric Power Station or Transmission Line Tower <\/td>\n<\/tr>\n | ||||||
115<\/td>\n | Influence and Subject to a GPR Interference <\/td>\n<\/tr>\n | ||||||
116<\/td>\n | Embedded in the Soil Caused by a Tower Ground Grid <\/td>\n<\/tr>\n | ||||||
117<\/td>\n | Ring Electrode <\/td>\n<\/tr>\n | ||||||
118<\/td>\n | Telecommunication Cable as Influenced Conductor <\/td>\n<\/tr>\n | ||||||
119<\/td>\n | Influence and Subject to Interference Cable Subject to Interference) <\/td>\n<\/tr>\n | ||||||
120<\/td>\n | Earth Electrode <\/td>\n<\/tr>\n | ||||||
122<\/td>\n | Fig 48) at 1000 V Interfering Earth Electrode Voltage <\/td>\n<\/tr>\n | ||||||
123<\/td>\n | Influence and Subject to Interference Determination of the Boundary of the Zone of Influence <\/td>\n<\/tr>\n | ||||||
125<\/td>\n | Power Stations <\/td>\n<\/tr>\n | ||||||
128<\/td>\n | 9.12 Safety Considerations <\/td>\n<\/tr>\n | ||||||
130<\/td>\n | Induced Voltages or Both 10.1 Introduction 10.2 Mitigating Factors Applicable to Fault Current Calculation <\/td>\n<\/tr>\n | ||||||
131<\/td>\n | 10.3 Mitigating Factors Applicable to GPR Calculations <\/td>\n<\/tr>\n | ||||||
132<\/td>\n | the Calculated GPR 10.5 Chemical Grounds <\/td>\n<\/tr>\n | ||||||
134<\/td>\n | 11 Communications Channel Time Requirements 11.1 Introduction 11.2 Power Systems <\/td>\n<\/tr>\n | ||||||
135<\/td>\n | 11.3 Protection Relays <\/td>\n<\/tr>\n | ||||||
136<\/td>\n | 11.4 Relaying Schemes Typical Three-Zone Impedance Relay Reach Fig <\/td>\n<\/tr>\n | ||||||
137<\/td>\n | Typical Impedance Protection System with Communications Fig <\/td>\n<\/tr>\n | ||||||
139<\/td>\n | Fig Simplified Transfer Trip System <\/td>\n<\/tr>\n | ||||||
140<\/td>\n | 11.5 Summary Table 8 Typical Trip and Reclose Sequence <\/td>\n<\/tr>\n | ||||||
142<\/td>\n | 12 Administrative Guidelines <\/td>\n<\/tr>\n | ||||||
146<\/td>\n | 13 Bibliography <\/td>\n<\/tr>\n | ||||||
152<\/td>\n | Mutual Impedance Calculations A1 General A2 Calculation of Mutual Impedance A3 Mutual Impedance Program-HP-67\/97 <\/td>\n<\/tr>\n | ||||||
153<\/td>\n | Fig A1 Configuration for Mutual Impedance-Example Fig A2 Configuration for Mutual Impedance-Example 2(a) Fig A3 Configuration for Mutual Impedance-Examples 2(b 2(c) <\/td>\n<\/tr>\n | ||||||
157<\/td>\n | Fig A4 User Instructions <\/td>\n<\/tr>\n | ||||||
158<\/td>\n | Table A1 External Mutual Impedance Program-HP-67\/97 <\/td>\n<\/tr>\n | ||||||
160<\/td>\n | INDEX <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" IEEE Recommended Practice for Determining the Electric Power Station Ground Potential Rise and Induced Voltage from a Power Fault<\/b><\/p>\n |