{"id":74327,"date":"2024-10-17T16:49:15","date_gmt":"2024-10-17T16:49:15","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/fema-307-1998\/"},"modified":"2024-10-24T19:14:59","modified_gmt":"2024-10-24T19:14:59","slug":"fema-307-1998","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/fema\/fema-307-1998\/","title":{"rendered":"FEMA 307 1998"},"content":{"rendered":"

0<\/p>\n

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
3<\/td>\nPreface <\/td>\n<\/tr>\n
5<\/td>\nTable of Contents <\/td>\n<\/tr>\n
9<\/td>\nList of Figures <\/td>\n<\/tr>\n
13<\/td>\nList of Tables <\/td>\n<\/tr>\n
15<\/td>\nPrologue
What have we learned? <\/td>\n<\/tr>\n
16<\/td>\nWhat does it mean? <\/td>\n<\/tr>\n
19<\/td>\n1. Introduction
1.1 Purpose And Scope
1.2 Materials Working Group
1.2.1 Tests and Investigations
1.2.2 Component Behavior and Modeling <\/td>\n<\/tr>\n
20<\/td>\nFigure 1 1 Component Force-Deformation Relationships
1.2.3 Repair Techniques <\/td>\n<\/tr>\n
21<\/td>\nFigure 1 2 Generalized Undamaged and Damaged Component Curves
1.3 Analysis Working Group <\/td>\n<\/tr>\n
22<\/td>\nFigure 1 3 Effect of Damage on Building Response
1.4 References <\/td>\n<\/tr>\n
23<\/td>\nFigure 1 4 Global Load-Displacement Relationships <\/td>\n<\/tr>\n
25<\/td>\n2. Reinforced Concrete Components
2.1 Commentary and Discussion
2.1.1 Development of Component Guides and l Factors <\/td>\n<\/tr>\n
26<\/td>\nFigure 2 1 Diagram of process used to develop component guides and component modification factors. <\/td>\n<\/tr>\n
27<\/td>\nTable 2 1 Ranges of reinforced concrete component displacement ductility, mD, associated with dam… <\/td>\n<\/tr>\n
28<\/td>\n2.2 Typical Force-Displacement Hysteretic Behavior <\/td>\n<\/tr>\n
46<\/td>\n2.3 Tabular Bibliography <\/td>\n<\/tr>\n
47<\/td>\nTable 2 2 Key References on Reinforced Concrete Wall Behavior. <\/td>\n<\/tr>\n
51<\/td>\n2.4 Symbols for Reinforced Concrete <\/td>\n<\/tr>\n
53<\/td>\n2.5 References for Reinforced Concrete <\/td>\n<\/tr>\n
57<\/td>\n3. Reinforced Masonry
3.1 Commentary and Discussion
3.1.1 Typical Hysteretic Behavior
3.1.2 Cracking and Damage Severity <\/td>\n<\/tr>\n
58<\/td>\nTable 3 1 Damage Patterns and Hysteretic Response for Reinforced Masonry Components <\/td>\n<\/tr>\n
64<\/td>\n3.1.3 Interpretation of Tests
3.2 Tabular Bibliography for Reinforced Masonry <\/td>\n<\/tr>\n
65<\/td>\nTable 3 2 Ranges of reinforced masonry component displacement ductility, mD, associated with dama… <\/td>\n<\/tr>\n
66<\/td>\nTable 3 3 Annotated Bibliography for Reinforced Masonry <\/td>\n<\/tr>\n
71<\/td>\n3.3 Symbols for Reinforced Masonry <\/td>\n<\/tr>\n
72<\/td>\n3.4 References for Reinforced Masonry <\/td>\n<\/tr>\n
77<\/td>\n4. Unreinforced Masonry
4.1 Commentary and Discussion
4.1.1 Hysteretic Behavior of URM Walls Subjected to In-Plane Demands <\/td>\n<\/tr>\n
90<\/td>\n4.1.2 Comments on FEMA 273 Component Force\/Displacement Relationships <\/td>\n<\/tr>\n
91<\/td>\nFigure 4 1 Bed-joint sliding force\/displacement relationship <\/td>\n<\/tr>\n
92<\/td>\nFigure 4 2 Relationship Between Toe Crushing and Bed-Joint Sliding <\/td>\n<\/tr>\n
93<\/td>\n4.1.3 Development of l-factors <\/td>\n<\/tr>\n
94<\/td>\nFigure 4 3 Developing the initial portion of the damaged force\/displacement relationship <\/td>\n<\/tr>\n
95<\/td>\n4.2 Tabular Bibliography for Unreinforced Masonry <\/td>\n<\/tr>\n
98<\/td>\n4.3 Symbols for Unreinforced Masonry <\/td>\n<\/tr>\n
99<\/td>\n4.4 References for Unreinforced Masonry <\/td>\n<\/tr>\n
103<\/td>\n5. Infilled Frames
5.1 Commentary And Discussion
5.1.1 Development of l-Factors for Component Guides
5.1.2 Development of Stiffness Deterioration\u2014lK <\/td>\n<\/tr>\n
104<\/td>\n5.1.3 The Determination of lQ for Strength Deterioration <\/td>\n<\/tr>\n
105<\/td>\n5.1.4 Development of lD\u2014Reduction in Displacement Capability <\/td>\n<\/tr>\n
106<\/td>\nFigure 5 1 Energy-based damage analysis of strength reduction to define lQ <\/td>\n<\/tr>\n
107<\/td>\n5.2 Tabular Bibliography for Infilled Frames
Table 5 1 Tabular Bibliography for Infilled Frames <\/td>\n<\/tr>\n
109<\/td>\n5.3 References for Infilled Frames <\/td>\n<\/tr>\n
113<\/td>\n6. Analytical Studies
6.1 Overview
6.2 Summary of Previous Findings
6.2.1 Hysteresis Models <\/td>\n<\/tr>\n
115<\/td>\nFigure 6 1 Effect of Hysteretic Properties on Response to 1940 NS El Centro Record (from Nakamura… <\/td>\n<\/tr>\n
116<\/td>\n6.2.2 Effect of Ground Motion Duration
6.2.3 Residual Displacement
6.2.4 Repeated Loading <\/td>\n<\/tr>\n
117<\/td>\n6.3 Dynamic Analysis Framework
6.3.1 Overview
6.3.2 Dynamic Analysis Approach <\/td>\n<\/tr>\n
118<\/td>\n6.3.3 Ground Motions <\/td>\n<\/tr>\n
119<\/td>\nTable 6 1 Recorded Ground Motions Used in the Analyses <\/td>\n<\/tr>\n
120<\/td>\nFigure 6 2 Characteristics of the WN87MWLN.090 (Mount Wilson) Ground Motion <\/td>\n<\/tr>\n
121<\/td>\nFigure 6 3 Characteristics of the BB92CIVC.360 (Big Bear) Ground Motion <\/td>\n<\/tr>\n
122<\/td>\nFigure 6 4 Characteristics of the SP88GUKA.360 (Spitak) Ground Motion <\/td>\n<\/tr>\n
123<\/td>\nFigure 6 5 Characteristics of the LP89CORR.090 (Corralitos) Ground Motion <\/td>\n<\/tr>\n
124<\/td>\nFigure 6 6 Characteristics of the NR94CENT.360 (Century City) Ground Motion <\/td>\n<\/tr>\n
125<\/td>\nFigure 6 7 Characteristics of the IV79ARY7.140 (Imperial Valley Array) Ground Motion <\/td>\n<\/tr>\n
126<\/td>\nFigure 6 8 Characteristics of the CH85LLEO.010 (Llolleo) Ground Motion <\/td>\n<\/tr>\n
127<\/td>\nFigure 6 9 Characteristics of the CH85VALP.070 (Valparaiso University) Ground Motion <\/td>\n<\/tr>\n
128<\/td>\nFigure 6 10 Characteristics of the IV40ELCN.180 (El Centro) Ground Motion <\/td>\n<\/tr>\n
129<\/td>\nFigure 6 11 Characteristics of the TB78TABS.344 (Tabas) Ground Motion <\/td>\n<\/tr>\n
130<\/td>\nFigure 6 12 Characteristics of the LN92JOSH.360 (Joshua Tree) Ground Motion <\/td>\n<\/tr>\n
131<\/td>\nFigure 6 13 Characteristics of the MX85SCT1.270 (Mexico City) Ground Motion <\/td>\n<\/tr>\n
132<\/td>\nFigure 6 14 Characteristics of the LN92LUCN.250 (Lucerne) Ground Motion <\/td>\n<\/tr>\n
133<\/td>\nFigure 6 15 Characteristics of the IV79BRWY.315 (Brawley Airport) Ground Motion <\/td>\n<\/tr>\n
134<\/td>\nFigure 6 16 Characteristics of the LP89SARA.360 (Saratoga) Ground Motion <\/td>\n<\/tr>\n
135<\/td>\nFigure 6 17 Characteristics of the NR94NWHL.360 (Newhall) Ground Motion <\/td>\n<\/tr>\n
136<\/td>\nFigure 6 18 Characteristics of the NR94SYLH.090 (Sylmar Hospital) Ground Motion <\/td>\n<\/tr>\n
137<\/td>\nFigure 6 19 Characteristics of the KO95TTRI.360 (Takatori) Ground Motion <\/td>\n<\/tr>\n
138<\/td>\n6.3.4 Force\/Displacement Models
Figure 6 20 Force-Displacement Hysteretic Models <\/td>\n<\/tr>\n
139<\/td>\nFigure 6 21 Degrading Models Used in the Analyses <\/td>\n<\/tr>\n
140<\/td>\nFigure 6 22 Bilinear Model Used to Determine Strengths of Degrading Models
Figure 6 23 Specification of the Pinching Point for the Takeda Pinching Model
6.3.5 Undamaged Oscillator Parameters <\/td>\n<\/tr>\n
141<\/td>\nFigure 6 24 Specification of the Uncracked Stiffness, Cracking Strength, and Unloading Stiffness …
6.3.6 Damaged Oscillator Parameters
Figure 6 25 Construction of Initial Force-Displacement Response for Prior Ductility Demand > 0 an… <\/td>\n<\/tr>\n
142<\/td>\nFigure 6 26 Construction of Initial Force-Displacement Response for PDD> 0 and RSR< 1 for Takeda5… <\/td>\n<\/tr>\n
143<\/td>\nFigure 6 27 Strength Degradation for Takeda Pinching Model
6.3.7 Summary of Dynamic Analysis Parameters <\/td>\n<\/tr>\n
144<\/td>\nFigure 6 28 Construction of Initial Force-Displacement Response for PDD> 0 and RSR< 1 for Takeda …
6.3.8 Implementation of Analyses
6.4 Results Of Dynamic Analyses
6.4.1 Overview and Nomenclature <\/td>\n<\/tr>\n
145<\/td>\n6.4.2 Response of Bilinear Models
6.4.3 Response of Takeda Models <\/td>\n<\/tr>\n
146<\/td>\nFigure 6 29 Response of Bilinear Oscillators to Short Duration Records (DDD= 8) <\/td>\n<\/tr>\n
147<\/td>\nFigure 6 30 Response of Bilinear Oscillators to Long Duration Records (DDD= 8) <\/td>\n<\/tr>\n
148<\/td>\nFigure 6 31 Response of Bilinear Oscillators to Forward Directive Records (DDD= 8) <\/td>\n<\/tr>\n
149<\/td>\nFigure 6 32 Displacement Response of Takeda Models Compared with Elastic Response and Bilinear Re… <\/td>\n<\/tr>\n
150<\/td>\nFigure 6 33 Displacement Response of Takeda Models Compared with Elastic Response and Bilinear Re… <\/td>\n<\/tr>\n
151<\/td>\nFigure 6 34 Displacement Response of Takeda Models Compared with Elastic Response and Bilinear Re… <\/td>\n<\/tr>\n
153<\/td>\nFigure 6 35 Effect of Cracking Without and With Strength Reduction on Displacement Response of Ta… <\/td>\n<\/tr>\n
154<\/td>\nFigure 6 36 Effect of Cracking Without and With Strength Reduction on Displacement Response of Ta… <\/td>\n<\/tr>\n
155<\/td>\nFigure 6 37 Effect of Cracking Without and With Strength Reduction on Displacement Response of Ta… <\/td>\n<\/tr>\n
156<\/td>\nFigure 6 38 Effect of Large Prior Ductility Demand Without and With Strength Reduction on Displac… <\/td>\n<\/tr>\n
157<\/td>\nFigure 6 39 Effect of Large Prior Ductility Demand Without and With Strength Reduction on Displac… <\/td>\n<\/tr>\n
158<\/td>\nFigure 6 40 Effect of Large Prior Ductility Demand Without and With Strength Reduction on Displac… <\/td>\n<\/tr>\n
159<\/td>\nFigure 6 41 Effect of Damage on Response to El Centro (IV40ELCN.180) for Takeda5, T=0.2 sec (DDD= 8) <\/td>\n<\/tr>\n
160<\/td>\nFigure 6 42 Effect of Damage on Response to El Centro (IV40ELCN.180) for Takeda5, T=0.5 sec (DDD= 8) <\/td>\n<\/tr>\n
161<\/td>\nFigure 6 43 Effect of Damage on Response to El Centro (IV40ELCN.180) for Takeda5, T=1.0 sec (DDD= 8) <\/td>\n<\/tr>\n
162<\/td>\nFigure 6 44 Effect of Damage on Response to El Centro (IV40ELCN.180) for Takeda5, T=1.5 sec (DDD= 8) <\/td>\n<\/tr>\n
163<\/td>\nFigure 6 45 Effect of Damage on Response to El Centro (IV40ELCN.180) for Takeda5, T=2.0 sec (DDD= 8) <\/td>\n<\/tr>\n
164<\/td>\nFigure 6 46 Effect of Large Prior Ductility Demand Without and With Strength Reduction on Displac… <\/td>\n<\/tr>\n
165<\/td>\nFigure 6 47 Effect of Large Prior Ductility Demand Without and With Strength Reduction on Displac… <\/td>\n<\/tr>\n
166<\/td>\nFigure 6 48 Effect of Large Prior Ductility Demand Without and With Strength Reduction on Displac… <\/td>\n<\/tr>\n
167<\/td>\nFigure 6 49 Effect of Damage on Response of TakPinch Model to El Centro (IV40ELCN.180) for T=1.0 … <\/td>\n<\/tr>\n
168<\/td>\nFigure 6 50 Effect of Damage on Response of TakPinch Model to El Centro (IV40ELCN.180) for T=1.0 … <\/td>\n<\/tr>\n
169<\/td>\n6.4.4 Response Statistics
Figure 6 51 Effect of Cracking on Displacement Response of Takeda10 Model for Short Duration Reco… <\/td>\n<\/tr>\n
170<\/td>\nFigure 6 52 Effect of Cracking on Displacement Response of Takeda10 Model for Long-Duration Recor…
Figure 6 53 Effect of Cracking on Displacement Response of Takeda10 Model for Forward Directive R… <\/td>\n<\/tr>\n
171<\/td>\nFigure 6 54 Effect of Damage on Response of Takeda10 Model to El Centro (IV40ELCN.180) for T=1.0 … <\/td>\n<\/tr>\n
173<\/td>\n6.5 Nonlinear Static Procedures
6.5.1 Introduction <\/td>\n<\/tr>\n
174<\/td>\n6.5.2 Description of Nonlinear Static Procedures <\/td>\n<\/tr>\n
175<\/td>\nFigure 6 58 Construction of Effective Stiffness for use with the Displacement Coefficient Method <\/td>\n<\/tr>\n
176<\/td>\nFigure 6 59 Initial Effective Stiffness and Capacity Curves Used in the Secant and Capacity Spect…
Figure 6 60 Schematic Depiction of Secant Method Displacement Estimation <\/td>\n<\/tr>\n
177<\/td>\nFigure 6 61 Schematic Depiction of Successive Iterations to Estimate Displacement Response Using …
6.5.3 Comments on Procedures
Figure 6 62 Schematic Depiction of Successive Iterations to Estimate Displacement Response Using … <\/td>\n<\/tr>\n
178<\/td>\n6.5.4 Application of Procedures to Undamaged and Damaged Oscillators
6.6 Comparison of NSP and Dynamic Analysis Results
6.6.1 Introduction
6.6.2 Displacement Estimation <\/td>\n<\/tr>\n
179<\/td>\n6.6.3 Displacement Ratio Estimation <\/td>\n<\/tr>\n
180<\/td>\nFigure 6 63 Values of dd,NSP\/dd for the Takeda5 Model <\/td>\n<\/tr>\n
181<\/td>\nFigure 6 64 Mean values of dd,NSP \/dd for all ground motions for each NSP method, for short and l…
Figure 6 65 Coefficient Method Estimates of Ratio of Damaged and Undamaged Oscillator Displacemen… <\/td>\n<\/tr>\n
182<\/td>\nFigure 6 66 Coefficient Method Estimates of Ratio of Damaged and Undamaged Oscillator Displacemen…
Figure 6 67 Coefficient Method Estimates of Ratio of Damaged and Undamaged Oscillator Displacemen… <\/td>\n<\/tr>\n
183<\/td>\nFigure 6 68 Secant Method Estimates of Ratio of Damaged and Undamaged Oscillator Displacement Nor…
Figure 6 69 Secant Method Estimates of Ratio of Damaged and Undamaged Oscillator Displacement Nor… <\/td>\n<\/tr>\n
184<\/td>\nFigure 6 70 Secant Method Estimates of Ratio of Damaged and Undamaged Oscillator Displacement Nor…
Figure 6 71 Capacity Spectrum Method Estimates of Ratio of Damaged and Undamaged Oscillator Displ… <\/td>\n<\/tr>\n
185<\/td>\nFigure 6 72 Capacity Spectrum Method Estimates of Ratio of Damaged and Undamaged Oscillator Displ…
Figure 6 73 Capacity Spectrum Method Estimates of Ratio of Damaged and Undamaged Oscillator Displ… <\/td>\n<\/tr>\n
186<\/td>\nFigure 6 74 Coefficient Method Estimates of Displacement Ratio of RSR=0.6 and RSR=1.0 Takeda5 Osc… <\/td>\n<\/tr>\n
187<\/td>\nFigure 6 75 Coefficient Method Estimates of Displacement Ratio of RSR=0.6 and RSR=1.0 Takeda5 Osc… <\/td>\n<\/tr>\n
188<\/td>\nFigure 6 76 Coefficient Method Estimates of Displacement Ratio of RSR=0.6 and RSR=1.0 Takeda5 Osc… <\/td>\n<\/tr>\n
189<\/td>\nFigure 6 77 Secant Method Estimates of Displacement Ratio of RSR=0.6 and RSR=1.0 Takeda5 Oscillat… <\/td>\n<\/tr>\n
190<\/td>\nFigure 6 78 Secant Method Estimates of Displacement Ratio of RSR=0.6 and RSR=1.0 Takeda5 Oscillat… <\/td>\n<\/tr>\n
191<\/td>\nFigure 6 79 Secant Method Estimates of Displacement Ratio of RSR=0.6 and RSR=1.0 Takeda5 Oscillat… <\/td>\n<\/tr>\n
192<\/td>\nFigure 6 80 Capacity Spectrum Method Estimates of Displacement Ratio of RSR=0.6 and RSR=1.0 Taked… <\/td>\n<\/tr>\n
193<\/td>\nFigure 6 81 Capacity Spectrum Method Estimates of Displacement Ratio of RSR=0.6 and RSR=1.0 Taked… <\/td>\n<\/tr>\n
194<\/td>\nFigure 6 82 Capacity Spectrum Method Estimates of Displacement Ratio of RSR=0.6 and RSR=1.0 Taked… <\/td>\n<\/tr>\n
195<\/td>\n6.7 Conclusions and Implications <\/td>\n<\/tr>\n
196<\/td>\n6.8 References <\/td>\n<\/tr>\n
199<\/td>\n7. Example Application
7.1 Introduction
7.1.1 Objectives
7.1.2 Organization <\/td>\n<\/tr>\n
200<\/td>\nFigure 7 1 Flowchart for example <\/td>\n<\/tr>\n
201<\/td>\n7.2 Investigation
7.2.1 Building Description
7.2.2 Post-earthquake Damage Observations <\/td>\n<\/tr>\n
202<\/td>\nFigure 7 2 Floor Plans <\/td>\n<\/tr>\n
203<\/td>\nFigure 7 3 Building Cross-section
Figure 7 4 Example Solid Wall Detail (Condition at Line 7) <\/td>\n<\/tr>\n
204<\/td>\nFigure 7 5 Example Coupled Wall Detail (Condition at line B) <\/td>\n<\/tr>\n
205<\/td>\nFigure 7 6 Solid Wall Example <\/td>\n<\/tr>\n
206<\/td>\nFigure 7 7 Coupled Wall Example <\/td>\n<\/tr>\n
207<\/td>\n7.2.3 Preliminary Classification (by Observation) of Component Types, Behavior Modes, and Damage … <\/td>\n<\/tr>\n
208<\/td>\n7.2.4 Final Classification (by Analysis) of Component Type, Behavior Mode and Damage Severity <\/td>\n<\/tr>\n
213<\/td>\n7.2.6 Summary of Component Classifications <\/td>\n<\/tr>\n
217<\/td>\n7.3 Evaluation by the Direct Method
7.3.1 Structural Restoration Measures <\/td>\n<\/tr>\n
218<\/td>\nTable 7 4 Summary of Component Type, Behavior Mode, and Damage Severity for Wall Components (Nort… <\/td>\n<\/tr>\n
219<\/td>\nTable 7 5 Summary of Component Type, Behavior Mode, and Damage Severity for Wall Components (East…
7.3.2 Nonstructural Restoration Measures
7.3.3 Restoration Summary and Cost
7.4 Evaluation by Performance Analysis <\/td>\n<\/tr>\n
220<\/td>\nFigure 7 8 Detail of Coupling Beam Replacement
Table 7 6 Restoration Cost Estimate by the Direct Method
7.4.1 Performance Objectives <\/td>\n<\/tr>\n
221<\/td>\nFigure 7 9 Response Spectra for Selected Performance Levels
7.4.2 Nonlinear Static Analysis <\/td>\n<\/tr>\n
222<\/td>\nFigure 7 10 Mathematical Model of Coupled Shear Wall <\/td>\n<\/tr>\n
223<\/td>\nFigure 7 11 Mathematical Model of Full Building <\/td>\n<\/tr>\n
224<\/td>\n7.4.3 Force-Displacement Capacity (Pushover Analysis) Results <\/td>\n<\/tr>\n
225<\/td>\nFigure 7 12 Component Force-Displacement Curves for Coupling Beams <\/td>\n<\/tr>\n
226<\/td>\nFigure 7 13 Comparison of Pre-event and Post-event Pushover Curves <\/td>\n<\/tr>\n
227<\/td>\n7.4.4 Estimation of Displacement, de, Caused by Damaging Earthquake
Figure 7 14 Response Spectra from Damaging Earthquake <\/td>\n<\/tr>\n
228<\/td>\n7.4.5 Displacement Demand <\/td>\n<\/tr>\n
230<\/td>\n7.4.6 Analysis of Restored Structure
Table 7 7 Performance Indices for Pre-event and Post-event Structures <\/td>\n<\/tr>\n
231<\/td>\nFigure 7 15 Comparison of Pre-event and Repaired Pushover Curves <\/td>\n<\/tr>\n
232<\/td>\n7.4.7 Performance Restoration Measures
7.5 Discussion of Results
7.5.1 Discussion of Building Performance
Table 7 8 Restoration Cost Estimate by the Relative Performance Method <\/td>\n<\/tr>\n
233<\/td>\n7.5.2 Discussion of Methodology and Repair Costs
7.6 References <\/td>\n<\/tr>\n
235<\/td>\nAppendix A. Component Damage Records for Building Evaluated in Example Application <\/td>\n<\/tr>\n
255<\/td>\nATC-43 Project Participants <\/td>\n<\/tr>\n
259<\/td>\nApplied Technology Council Projects And Report Information <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

FEMA 307 – Evaluation of Earthquake Damaged Concrete and Masonry Wall Buildings Technical Resources<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
FEMA<\/b><\/a><\/td>\n1998<\/td>\n272<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":74328,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[2743],"product_tag":[],"class_list":{"0":"post-74327","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-fema","8":"first","9":"instock","10":"sold-individually","11":"shipping-taxable","12":"purchasable","13":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/74327","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/74328"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=74327"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=74327"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=74327"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}