{"id":420304,"date":"2024-10-20T06:30:27","date_gmt":"2024-10-20T06:30:27","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bsi-pd-iec-tr-61869-1002017-3\/"},"modified":"2024-10-26T12:10:18","modified_gmt":"2024-10-26T12:10:18","slug":"bsi-pd-iec-tr-61869-1002017-3","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bsi-pd-iec-tr-61869-1002017-3\/","title":{"rendered":"BSI PD IEC\/TR 61869-100:2017"},"content":{"rendered":"

This part of IEC 61869 is applicable to inductive protective current transformers meeting the requirements of the IEC 61869-2 standard.<\/p>\n

It may help relay manufacturers, CT manufacturers and project engineers to understand how a CT responds to simplified or standardized short circuit signals. Therefore, it supplies advanced information to comprehend the definition of inductive current transformers as well as their requirements.<\/p>\n

The document aims to provide information for the casual user as well as for the specialist.<\/p>\n

Where necessary, the level of abstraction is mentioned in the document. It also discusses the question about the responsibilities in the design process for current transformers.<\/p>\n

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
4<\/td>\nCONTENTS <\/td>\n<\/tr>\n
9<\/td>\nFOREWORD <\/td>\n<\/tr>\n
11<\/td>\nINTRODUCTION <\/td>\n<\/tr>\n
12<\/td>\n1 Scope
2 Normative references
3 Terms and definitions and abbreviations
3.1 Terms and definitions <\/td>\n<\/tr>\n
14<\/td>\n3.2 Index of abbreviations
Figures
Figure 1 \u2013 Definition of the fault inception angle \u03b3 <\/td>\n<\/tr>\n
16<\/td>\n4 Responsibilities in the current transformer design process
4.1 History
4.2 Subdivision of the current transformer design process <\/td>\n<\/tr>\n
17<\/td>\n5 Basic theoretical equations for transient designing
5.1 Electrical circuit
5.1.1 General <\/td>\n<\/tr>\n
18<\/td>\nFigure 2 \u2013 Components of protection circuit <\/td>\n<\/tr>\n
19<\/td>\nFigure 3 \u2013 Entire electrical circuit <\/td>\n<\/tr>\n
20<\/td>\n5.1.2 Current transformer
Figure 4 \u2013 Primary short circuit current <\/td>\n<\/tr>\n
21<\/td>\nFigure 5 \u2013 Non-linear flux of Lct <\/td>\n<\/tr>\n
22<\/td>\n5.2 Transient behaviour
5.2.1 General
Figure 6 \u2013 Linearized magnetizing inductance of a current transformer <\/td>\n<\/tr>\n
23<\/td>\nFigure 7 \u2013 Simulated short circuit behaviour with non-linear model <\/td>\n<\/tr>\n
24<\/td>\n5.2.2 Fault inception angle <\/td>\n<\/tr>\n
25<\/td>\n5.2.3 Differential equation
Figure 8 \u2013 Three-phase short circuit behaviour <\/td>\n<\/tr>\n
26<\/td>\nFigure 9 \u2013 Composition of flux <\/td>\n<\/tr>\n
27<\/td>\n6 Duty cycles
6.1 Duty cycle C \u2013 O
6.1.1 General <\/td>\n<\/tr>\n
28<\/td>\nFigure\u00a010 \u2013 Short circuit current for two different fault inception angles
Figure 11 \u2013 \u03c8max as the curve of the highest flux values <\/td>\n<\/tr>\n
29<\/td>\n6.1.2 Fault inception angle
Figure 12 \u2013 Primary current curves for the 4 cases for 50\u00a0Hz and \u03d5\u00a0=\u00a070\u00b0
Tables
Table 1 \u2013 Four significant cases of short circuit current inception angles <\/td>\n<\/tr>\n
30<\/td>\n6.1.3 Transient factor Ktf and transient dimensioning factor Ktd
Figure 13 \u2013 Four significant cases of short circuit currents with impact on magnetic saturation of current transformers <\/td>\n<\/tr>\n
33<\/td>\nFigure 14 \u2013 Relevant time ranges for calculation of transient factor <\/td>\n<\/tr>\n
34<\/td>\nFigure 15 \u2013 Occurrence of the first flux peak depending on Tp, at 50 Hz <\/td>\n<\/tr>\n
35<\/td>\nFigure 16 \u2013 Worst-case angle \u03b8tf,\u03c8max as function of Tp and t\u2019al <\/td>\n<\/tr>\n
36<\/td>\nFigure 17 \u2013 Worst-case fault inception angle \u03b3tf,\u03c8max as function of Tp and t\u2019al
Figure 18 \u2013 Ktf,\u03c8max calculated with worst-case fault inception angle \u03b8\u03c8max <\/td>\n<\/tr>\n
37<\/td>\nFigure 19 \u2013 Polar diagram with Ktf,\u03c8max and \u03b3tf,\u03c8max <\/td>\n<\/tr>\n
42<\/td>\nFigure 20 \u2013 Determination of Ktf in time range 1 <\/td>\n<\/tr>\n
43<\/td>\nFigure 21 \u2013 Primary current curves for 50Hz, Tp = 1 ms, \u03b3\u03c8max = 166\u00b0 for t\u2019al = 2 ms <\/td>\n<\/tr>\n
44<\/td>\nFigure 22 \u2013 worst-case fault inception angles for 50Hz, Tp = 50\u00a0ms and Ts = 61\u00a0ms <\/td>\n<\/tr>\n
45<\/td>\nFigure 23 \u2013 transient factor for different time ranges <\/td>\n<\/tr>\n
46<\/td>\nFigure 24 \u2013 Ktf in all time ranges for Ts = 61 ms at 50 Hz with t\u2019al as parameter
Figure 25 \u2013 Zoom of Figure 24 <\/td>\n<\/tr>\n
47<\/td>\nFigure 26 \u2013 Primary current for a short primary time constant <\/td>\n<\/tr>\n
48<\/td>\nFigure 27 \u2013 Ktf values for a short primary time constant <\/td>\n<\/tr>\n
49<\/td>\nFigure 28 \u2013 Short circuit currents for various fault inception angles <\/td>\n<\/tr>\n
50<\/td>\nFigure 29 \u2013 Transient factors for various fault inception angles (example)
Figure 30 \u2013 Worst-case fault inception angles for each time step (example for 50 Hz) <\/td>\n<\/tr>\n
51<\/td>\nFigure 31 \u2013 Primary current for two different fault inception angles(example for 16,67 Hz) <\/td>\n<\/tr>\n
52<\/td>\n6.1.4 Reduction of asymmetry by definition of the minimum current inception angle
Figure 32 \u2013 Transient factors for various fault inception angles(example for 16,67 Hz)
Figure 33 \u2013 Worst-case fault inception angles for every time step(example for 16,67 Hz) <\/td>\n<\/tr>\n
53<\/td>\nFigure 34 \u2013 Fault occurrence according to Warrington <\/td>\n<\/tr>\n
54<\/td>\nFigure 35 \u2013 estimated distribution of faults over several years <\/td>\n<\/tr>\n
55<\/td>\n6.2 Duty cycle C \u2013 O \u2013 C \u2013 O
6.2.1 General
Figure 36 \u2013 Transient factor Ktf calculated with various fault inception angles \u03b3 <\/td>\n<\/tr>\n
56<\/td>\n6.2.2 Case A: No saturation occurs until t\u2019
Figure 37 \u2013 Flux course in a C-O-C-O cycle of a non-gapped core <\/td>\n<\/tr>\n
57<\/td>\nFigure 38 \u2013 Typical flux curve in a C-O-C-O cycle of a gapped core,with higher flux in the second energization <\/td>\n<\/tr>\n
58<\/td>\n6.2.3 Case B: Saturation occurs between t\u2019al and t\u2019
Figure\u00a039 \u2013 Flux curve in a C-O-C-O cycle of a gapped core, with higher flux in the first energization <\/td>\n<\/tr>\n
59<\/td>\nFigure 40 \u2013 Flux curve in a C-O-C-O cycle with saturation allowed <\/td>\n<\/tr>\n
60<\/td>\n6.3 Summary
Figure 41 \u2013 Core saturation used to reduce the peak flux value <\/td>\n<\/tr>\n
61<\/td>\nFigure 42 \u2013 Curves overview for transient designing <\/td>\n<\/tr>\n
62<\/td>\nTable 2 \u2013 Equation overview for transient designing <\/td>\n<\/tr>\n
63<\/td>\n7 Determination of the transient dimensioning factor Ktd by numerical calculation
7.1 General
7.2 Basic circuit <\/td>\n<\/tr>\n
64<\/td>\n7.3 Algorithm
Figure 43 \u2013 Basic circuit diagram for numerical calculation of Ktd <\/td>\n<\/tr>\n
65<\/td>\n7.4 Calculation method <\/td>\n<\/tr>\n
66<\/td>\n7.5 Reference examples
Figure 44 \u2013 Ktd calculation for C-O cycle <\/td>\n<\/tr>\n
67<\/td>\nFigure 45 \u2013 Ktd calculation for C-O-C-O cyclewithout core saturation in the first cycle <\/td>\n<\/tr>\n
68<\/td>\nFigure 46 \u2013 Ktd calculation for C-O-C-O cycleconsidering core saturation in the first cycle <\/td>\n<\/tr>\n
69<\/td>\nFigure 47 \u2013 Ktd calculation for C-O-C-O cycle with reduced asymmetry <\/td>\n<\/tr>\n
70<\/td>\nFigure 48 \u2013 Ktd calculation for C-O-C-O cycle with short t\u2019al and t\u2019\u2019al <\/td>\n<\/tr>\n
71<\/td>\n8 Core saturation and remanence
8.1 Saturation definition for common practice
8.1.1 General
8.1.2 Definition of the saturation flux in the preceding standard IEC\u00a060044-1
Figure 49 \u2013 Ktd calculation for C-O-C-O cycle for a non-gapped core <\/td>\n<\/tr>\n
72<\/td>\nFigure 50 \u2013 Comparison of the saturation definitionsaccording to IEC\u00a060044-1 and according to IEC\u00a061869-2 <\/td>\n<\/tr>\n
73<\/td>\n8.1.3 Definition of the saturation flux in IEC\u00a061869-2
Figure 51 \u2013 Remanence factor Kr according to the previous definition IEC\u00a060044-1 <\/td>\n<\/tr>\n
74<\/td>\n8.1.4 Approach \u201c5\u00a0% \u2013 Factor 5\u201d
Figure 52 \u2013 Determination of saturation and remanenceflux using the DC method for a gapped core
Figure 53 \u2013 Determination of saturation and remanence flux using DC method for a non-gapped core <\/td>\n<\/tr>\n
75<\/td>\n8.2 Gapped cores versus non-gapped cores
Table 3 \u2013 Comparison of saturation point definitions <\/td>\n<\/tr>\n
76<\/td>\nTable 4 \u2013 Measured remanence factors <\/td>\n<\/tr>\n
77<\/td>\n8.3 Possible causes of remanence <\/td>\n<\/tr>\n
78<\/td>\nFigure 54 \u2013 CT secondary currents as fault records of arc furnace transformer <\/td>\n<\/tr>\n
79<\/td>\nFigure 55 \u2013 4-wire connection <\/td>\n<\/tr>\n
80<\/td>\nFigure 56 \u2013 CT secondary currents as fault records in the second fault of auto reclosure <\/td>\n<\/tr>\n
81<\/td>\n9 Practical recommendations
9.1 Accuracy hazard in case various PR class definitions for the same core
9.2 Limitation of the phase displacement \u2206\u03d5 and of the secondary loop time constant Ts by the transient dimensioning factor Ktd for TPY cores
Table 5 \u2013 Various PR class definitions for the same core <\/td>\n<\/tr>\n
82<\/td>\n10 Relations between the various types of classes
10.1 Overview
10.2 Calculation of e.m.f. at limiting conditions
Table 6 \u2013 e.m.f. definitions
Table 7 \u2013 Conversion of e.m.f. values <\/td>\n<\/tr>\n
83<\/td>\n10.3 Calculation of the exciting (or magnetizing) current at limiting conditions
10.4 Examples
Table 8 \u2013 Conversion of dimensioning factors
Table 9 \u2013 Definitions of limiting current <\/td>\n<\/tr>\n
84<\/td>\n10.5 Minimum requirements for class specification
10.6 Replacing a non-gapped core by a gapped core
Table 10 \u2013 Minimum requirements for class specification <\/td>\n<\/tr>\n
85<\/td>\n11 Protection functions and correct CT specification
11.1 General
11.2 General application recommendations
11.2.1 Protection functions and appropriate classes
Table 11 \u2013 Effect of gapped and non-gapped cores <\/td>\n<\/tr>\n
86<\/td>\nTable 12 \u2013 Application recommendations <\/td>\n<\/tr>\n
87<\/td>\n11.2.2 Correct CT designing in the past and today <\/td>\n<\/tr>\n
89<\/td>\n11.3 Overcurrent protection: ANSI code: (50\/51\/50N\/51N\/67\/67N); IEC symbol: I>
11.3.1 Exposition <\/td>\n<\/tr>\n
90<\/td>\nFigure 57 \u2013 Application of instantaneous\/time-delay overcurrent relay (ANSI codes 50\/51) with definite time characteristic
Figure 58 \u2013 Time-delay overcurrent relay, time characteristics <\/td>\n<\/tr>\n
91<\/td>\n11.3.2 Recommendation
11.3.3 Example
11.4 Distance protection: ANSI codes: 21\/21N, IEC code: Z<
11.4.1 Exposition
Figure 59 \u2013 CT specification example, time overcurrent <\/td>\n<\/tr>\n
92<\/td>\nFigure 60 \u2013 Distance protection, principle (time distance diagram) <\/td>\n<\/tr>\n
93<\/td>\n11.4.2 Recommendations
11.4.3 Examples
Figure 61 \u2013 Distance protection, principle (R\/X diagram) <\/td>\n<\/tr>\n
94<\/td>\nFigure 62 \u2013 CT Designing example, distance protection <\/td>\n<\/tr>\n
98<\/td>\nFigure 63 \u2013 Primary current with C-O-C-O duty cycle
Figure 64 \u2013 Transient factor Ktf with its envelope curve Ktfp <\/td>\n<\/tr>\n
99<\/td>\nFigure 65 \u2013 Transient factor Ktf for CT class TPY with saturation in the first fault
Figure 66 \u2013 Transient factor Ktf for CT class TPZ with saturation in the first fault <\/td>\n<\/tr>\n
100<\/td>\n11.5 Differential protection
11.5.1 Exposition
Figure 67 \u2013 Transient factor Ktf for CT class TPX <\/td>\n<\/tr>\n
101<\/td>\n11.5.2 General recommendations
11.5.3 Transformer differential protection (87T)
Figure 68 \u2013 Differential protection, principle <\/td>\n<\/tr>\n
102<\/td>\nFigure 69 \u2013 Transformer differential protection, faults <\/td>\n<\/tr>\n
103<\/td>\nFigure 70 \u2013 Transformer differential protection <\/td>\n<\/tr>\n
105<\/td>\nTable 13 \u2013 Calculation results of the overdimensioning of a TPY core
Table 14 \u2013 Calculation results of overdimensioning as PX core <\/td>\n<\/tr>\n
106<\/td>\n11.5.4 Busbar protection: Ansi codes (87B)
Figure 71 \u2013 Busbar protection, external fault <\/td>\n<\/tr>\n
109<\/td>\n11.5.5 Line differential protection: ANSI codes (87L) (Low impedance)
Figure 72 \u2013 Simulated currents of a current transformerfor bus bar differential protection <\/td>\n<\/tr>\n
110<\/td>\nFigure 73 \u2013 CT designing for a simple line with two ends <\/td>\n<\/tr>\n
111<\/td>\n11.5.6 High impedance differential protection
Table 15 \u2013 Calculation scheme for line differential protection <\/td>\n<\/tr>\n
112<\/td>\nFigure 74 \u2013 Differential protection realized with a simple electromechanical relay <\/td>\n<\/tr>\n
113<\/td>\nFigure 75 \u2013 High impedance protection principle <\/td>\n<\/tr>\n
114<\/td>\nFigure 76 \u2013 Phasor diagram for external faults <\/td>\n<\/tr>\n
115<\/td>\nFigure 77 \u2013 Phasor diagram for internal faults <\/td>\n<\/tr>\n
116<\/td>\nFigure 78 \u2013 Magnetizing curve of CT <\/td>\n<\/tr>\n
119<\/td>\nFigure\u00a079 \u2013 Single-line diagram of busbar and high impedance differential protection
Table 16 \u2013 Busbar protection scheme with two incoming feeders <\/td>\n<\/tr>\n
121<\/td>\nFigure 80 \u2013 Currents at the fault location (primary values) <\/td>\n<\/tr>\n
122<\/td>\nFigure 81 \u2013 Primary currents through CTs, scaled to CT secondary side
Figure 82 \u2013 CT secondary currents <\/td>\n<\/tr>\n
123<\/td>\nFigure 83 \u2013 Differential voltage
Figure 84 \u2013 Differential current and r.m.s. filter signal <\/td>\n<\/tr>\n
124<\/td>\nFigure 85 \u2013 Currents at the fault location (primary values)
Figure 86 \u2013 Primary currents through CTs, scaled to CT secondary side <\/td>\n<\/tr>\n
125<\/td>\nFigure 87 \u2013 CT secondary currents
Figure 88 \u2013 Differential voltage <\/td>\n<\/tr>\n
126<\/td>\nFigure 89 \u2013 Differential current and r.m.s. filtered signal
Figure 90 \u2013 Currents at the fault location (primary values) <\/td>\n<\/tr>\n
127<\/td>\nFigure 91 \u2013 Primary currents through CTs, scaled to CT secondary side
Figure 92 \u2013 CT secondary currents <\/td>\n<\/tr>\n
128<\/td>\nFigure 93 \u2013 Differential voltage
Figure 94 \u2013 Differential current and r.m.s. filtered signal <\/td>\n<\/tr>\n
129<\/td>\nFigure 95 \u2013 Differential voltage without varistor limitation <\/td>\n<\/tr>\n
130<\/td>\nAnnex\u00a0A (informative)Duty cycle C \u2013 O software code <\/td>\n<\/tr>\n
132<\/td>\nAnnex\u00a0B (informative)Software code for numerical calculation of Ktd <\/td>\n<\/tr>\n
137<\/td>\nBibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

Instrument transformers – Guidance for application of current transformers in power system protection<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
BSI<\/b><\/a><\/td>\n2017<\/td>\n140<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":420314,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[285,2641],"product_tag":[],"class_list":{"0":"post-420304","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-17-220-20","7":"product_cat-bsi","9":"first","10":"instock","11":"sold-individually","12":"shipping-taxable","13":"purchasable","14":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/420304","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/420314"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=420304"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=420304"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=420304"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}