{"id":398617,"date":"2024-10-20T04:37:36","date_gmt":"2024-10-20T04:37:36","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/ieee-446-1987-2\/"},"modified":"2024-10-26T08:25:09","modified_gmt":"2024-10-26T08:25:09","slug":"ieee-446-1987-2","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/ieee\/ieee-446-1987-2\/","title":{"rendered":"IEEE 446-1987"},"content":{"rendered":"

Revision Standard – Superseded. Recommended engineering principles, practices, and guidelines for the selection and application of emergency and standby power systems are presented. Industrial and commercial users’ needs are outlined and discussed, and the material is primarily presented from a user’s viewpoint. General requirements, protection, grounding, applications by specific industry, and maintenance guidelines are included.<\/p>\n

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
2<\/td>\n4.2.24 Additional Information <\/td>\n<\/tr>\n
24<\/td>\n1 Scope <\/td>\n<\/tr>\n
26<\/td>\n2 Definitions
2.1 Introduction <\/td>\n<\/tr>\n
28<\/td>\n2.2 References <\/td>\n<\/tr>\n
30<\/td>\n3 General Need Guidelines
3.1 Introduction <\/td>\n<\/tr>\n
31<\/td>\nAverage Number of Thunderstorm Days per Year
Fig 2 Approximate Density of Tornadoes <\/td>\n<\/tr>\n
35<\/td>\n3.1.1 1 s-1 min
3.1.2 10-40Cycles
3.1.3 0-8 Cycles
3.1.4 0.001-1 Cycles <\/td>\n<\/tr>\n
36<\/td>\nLess than 0.001 Cycle <\/td>\n<\/tr>\n
38<\/td>\n(Completed September <\/td>\n<\/tr>\n
44<\/td>\n3.2 Lighting
3.2.1 Introduction
Lighting for Evacuation Purposes
Perimeter and Security Lighting <\/td>\n<\/tr>\n
45<\/td>\nTable 2 Condensed General Criteria for Preliminary Consideration <\/td>\n<\/tr>\n
55<\/td>\n3.2.4 Warning Lights
3.2.5 Health Care Facilities
Standby Lighting for Equipment Repair
Lighting for Production
Lighting to Reduce Hazards to Machine Operators
Supplemental Lighting for High-Voltage Discharge Systems
Codes Rules and Regulations <\/td>\n<\/tr>\n
56<\/td>\nRecommended Systems
Table 3 Typical Emergency and Standby Lighting Recommendations <\/td>\n<\/tr>\n
57<\/td>\n3.3 Startup Power
3.3.1 Introduction
Example of a System Utilizing Startup Power
3.3.3 Lighting
3.3.4 Engine-Driven Generators <\/td>\n<\/tr>\n
58<\/td>\n3.3.5 Battery Systems
3.3.6 Other Systems
3.3.7 System Justifcation
3.4 Transportation
3.4.1 Introduction
3.4.2 Elevators <\/td>\n<\/tr>\n
59<\/td>\nConveyors and Escalators
Fig 3 Elevator Emergency Power Transfer System <\/td>\n<\/tr>\n
60<\/td>\nOther Transportation Systems
Mechanical Utility Systems
3.5.1 Introduction
Be Necessary <\/td>\n<\/tr>\n
61<\/td>\nOrderly Shutdown of Mechanical Utility Systems
Alternates to Orderly Shutdown
3.6 Heating
Maintaining Steam Production
3.6.2 Process Heating <\/td>\n<\/tr>\n
62<\/td>\nTable 4 Systems for Continued Steam Production <\/td>\n<\/tr>\n
63<\/td>\n3.6.3 Building Heating
3.7 Refrigeration
Requirements of Selected Refrigeration Applications <\/td>\n<\/tr>\n
64<\/td>\nRefrigeration to Reduce Hazards
Typical System to Maintain Refrigeration
3.8 Production
Facility <\/td>\n<\/tr>\n
65<\/td>\nEquations for Determining Cost of Power Interruptions
3.8.3 Commercial Buildings
Additional Losses Due to Power Interruptions <\/td>\n<\/tr>\n
66<\/td>\nDetermining the Likelihood of Power Failures
Table 5 Example of Recorded Power Failures
Table 6 Example of Recorded Short-Term Dips <\/td>\n<\/tr>\n
67<\/td>\nFactors that Increase the Likelihood of Power Failures
3.8.7 Power Reserves
Examples of Standby Power Applications for Production
Types of Systems to Consider <\/td>\n<\/tr>\n
68<\/td>\n3.9 Space Conditioning
3.9.1 Definition
3.9.2 Description
Codes and Standards
3.9.4 Application Considerations <\/td>\n<\/tr>\n
69<\/td>\nMay Be Justified
Typical Auxiliary Power Systems <\/td>\n<\/tr>\n
70<\/td>\n3.10 Fire Protection
Codes Rules and Regulations
3.10.2 Arson
3.10.3 Typical Needs
3.10.4 Application Considerations <\/td>\n<\/tr>\n
71<\/td>\nFeeder Routing to Fire Protection Equipment
3.1 1 Data Processing
Classification of Systems <\/td>\n<\/tr>\n
73<\/td>\nViewpoint <\/td>\n<\/tr>\n
74<\/td>\nPower Requirements for Data Processing Equipment
Major Computer Manufacturers <\/td>\n<\/tr>\n
76<\/td>\nManufacturers <\/td>\n<\/tr>\n
79<\/td>\nSources <\/td>\n<\/tr>\n
82<\/td>\nJustification of Supplemental Power <\/td>\n<\/tr>\n
83<\/td>\nPower Quality Improvement Techniques <\/td>\n<\/tr>\n
84<\/td>\nTable 8 Performance of Power Conditioning Equipment <\/td>\n<\/tr>\n
85<\/td>\nSelection Factors for Supplemental Power <\/td>\n<\/tr>\n
86<\/td>\nTable 9 Summary of Typical Power-Line Disturbances <\/td>\n<\/tr>\n
87<\/td>\nEliminating or Moderating Power Disturbances (US Navy) <\/td>\n<\/tr>\n
89<\/td>\n3.12 Life Safety and Life Support Systems
3.12.1 Introduction
3.12.2 Health Care Facilities <\/td>\n<\/tr>\n
91<\/td>\nFig 5 Typical Hospital Wiring Arrangement <\/td>\n<\/tr>\n
92<\/td>\nTable 11 Sensitive Hospital Loads <\/td>\n<\/tr>\n
93<\/td>\n3.12.3 Other Critical Life Systems
3.13 Communication Systems
3.13.1 Description <\/td>\n<\/tr>\n
94<\/td>\n3.13.2 Commonly Used Auxiliary Power Systems
Evaluating the Need for an Auxiliary Power System <\/td>\n<\/tr>\n
95<\/td>\n3.14 Signal Circuits
3.14.1 Description
3.14.2 Signal Circuits in Health Care Facilities
3.14.3 Signal Circuits in Industrial and Commercial Buildings
3.14.4 Types of Auxiliary Power Systems <\/td>\n<\/tr>\n
96<\/td>\n3.15 References <\/td>\n<\/tr>\n
97<\/td>\n3.16 Bibliography <\/td>\n<\/tr>\n
100<\/td>\n4 Generator and Electric Utility Systems
4.1 Guidelines for Use <\/td>\n<\/tr>\n
102<\/td>\n4.2 Engine-Driven Generators
4.2.1 Introduction
4.2.2 Diesel-Engine Generators
4.2.3 Gasoline-Engine Generators
4.2.4 Gas-Engine Generators <\/td>\n<\/tr>\n
103<\/td>\n4.2.5 Derating Requirements
Typical Diesel Engine-Driven Generator Sets
Table 12 Typical Ratings of Engine-Driven Generator Sets <\/td>\n<\/tr>\n
104<\/td>\nMultiple Engine-Generator Set Systems
4.2.7 Construction and Controls
Typical Engine-Generator Systems <\/td>\n<\/tr>\n
105<\/td>\nTwo Engine-Generator Sets Operating in Parallel
Peaking Power Control System <\/td>\n<\/tr>\n
106<\/td>\nThree-Source Priority Load Selection <\/td>\n<\/tr>\n
107<\/td>\nFig 10 combination On-Site Power and Emergency Transfer System <\/td>\n<\/tr>\n
108<\/td>\n4.2.9 Special Considerations
Engine-Generator Set Rating
Motor-Starting Considerations
Fig 11 Dual Engine-Generator Standby System <\/td>\n<\/tr>\n
109<\/td>\n4.2.12 Load Transient Considerations
4.2.13 Manual Systems
4.2.14 Automatic Systems <\/td>\n<\/tr>\n
110<\/td>\n4.2.15 Automatic Transfer Devices
Engine-Generator Set Reliability <\/td>\n<\/tr>\n
111<\/td>\nAir Supply and Exhaust
4.2.18 Noise Reduction
4.2.19 Fuel Systems
Governors and Regulation <\/td>\n<\/tr>\n
112<\/td>\n4.2.21 Starting Methods
4.2.22 Battery Charging
Generators
Multiple Utility Services
4.3.1 Introduction <\/td>\n<\/tr>\n
113<\/td>\n4.3.2 Closed-Transition Transfer
Utility Services Separation
Simple Automatic Transfer Schemes
Fig 12 Two-Utility-Source System Using One Automatic Transfer Switch <\/td>\n<\/tr>\n
114<\/td>\nBe Closed <\/td>\n<\/tr>\n
115<\/td>\n4.3.5 Overcurrent Protection
Provide Varying Degrees of Emergency Power <\/td>\n<\/tr>\n
116<\/td>\nTransfer Device Ratings and Accessories <\/td>\n<\/tr>\n
117<\/td>\nofLoad <\/td>\n<\/tr>\n
119<\/td>\n4.3.7 Voltage Tolerances
Transferring Motor Loads <\/td>\n<\/tr>\n
120<\/td>\nFig 16 Inphase Motor Load Transfer
Fig 17 Motor Load Disconnect Circuit <\/td>\n<\/tr>\n
121<\/td>\nFig 18 Neutral Off Position <\/td>\n<\/tr>\n
122<\/td>\nSpeed)
Fig 20 Closed Transition Transfer <\/td>\n<\/tr>\n
123<\/td>\nMultiple Utility Services
and Maintenance May 1984 p <\/td>\n<\/tr>\n
124<\/td>\nFig 21 Typical System Supplying Electric Power to Manufacturing Plant <\/td>\n<\/tr>\n
125<\/td>\n4.3.10 Bypass-Isolation Switches
Fig 22 Bypass to Normal <\/td>\n<\/tr>\n
126<\/td>\nFig 23 Test Position
Fig 24 Complete Isolation <\/td>\n<\/tr>\n
127<\/td>\nNonautomatic Transfer Switches <\/td>\n<\/tr>\n
128<\/td>\n4.3.12 Conclusion
4.4 Turbine-Driven Generators
4.4.1 Introduction
Steam Turbine Generators
and Several Automatic Transfer Switches <\/td>\n<\/tr>\n
129<\/td>\nDual-Utility Supply <\/td>\n<\/tr>\n
130<\/td>\nGas and Oil Turbine Generators <\/td>\n<\/tr>\n
131<\/td>\nAdvantages and Disadvantages
Power System <\/td>\n<\/tr>\n
132<\/td>\nFig 28 Modular Packaged Gas-Turbine-Generator Set Mounted on Trailer
Fig 29 Typical Performance Correction Factor for Altitude <\/td>\n<\/tr>\n
133<\/td>\n4.5 Mobile Equipment
4.5.1 Introduction
4.5.2 Special Requirements <\/td>\n<\/tr>\n
134<\/td>\nFig 30 Typical Trailer-Mounted Model (15-45 kW Capacity) <\/td>\n<\/tr>\n
135<\/td>\nFig 31 Typical 2800 kW Mobile Turbine-Driven Generator Set <\/td>\n<\/tr>\n
136<\/td>\n4.5.3 Special Precautions
4.5.4 Maintenance <\/td>\n<\/tr>\n
137<\/td>\n4.5.5 Application
4.5.6 Rental
4.5.7 Fuel Systems
4.5.8 Agricultural Applications
4.6 References <\/td>\n<\/tr>\n
138<\/td>\n4.7 Bibliography <\/td>\n<\/tr>\n
140<\/td>\n5 Stored Energy Systems
5.1 Introduction <\/td>\n<\/tr>\n
141<\/td>\nMechanical Energy Storage
5.2.1 Introduction
5.2.2 Kinetic Energy <\/td>\n<\/tr>\n
142<\/td>\n5.3 Battery Systems
5.3.1 Introduction
Stationary Battery Construction <\/td>\n<\/tr>\n
143<\/td>\n5.3.3 Recharge\/Equalize Charging
Fig 32 Battery \ufb01Float\ufb02 Diagram
Table 13 Number of Cells for Desired Voltage <\/td>\n<\/tr>\n
144<\/td>\n5.3.4 Battery Sizing <\/td>\n<\/tr>\n
145<\/td>\nFig 33 Typical Redundant Charger Circuit
Temperature <\/td>\n<\/tr>\n
146<\/td>\nUnit Lighting Equipment <\/td>\n<\/tr>\n
147<\/td>\nFig 35 Typical Battery Unit
Table 14 General Differences for Various Battery Types <\/td>\n<\/tr>\n
148<\/td>\nCentral Battery Lighting Systems
Systems <\/td>\n<\/tr>\n
149<\/td>\nMultiple Sources Used for Normal Lighting
5.4 Batteryhverter Systems
5.4.1 Introduction <\/td>\n<\/tr>\n
150<\/td>\nBattery\/Inverter Supply Used as Standby Source
Nonredundant Uninterruptible Power Supply
Fig 36 Short-Interruption Standby System
Fig 37 Oscillogram of Output Voltage of System in Fig 36 During Transfer <\/td>\n<\/tr>\n
151<\/td>\nFig 38 Nonredundant Uninterruptible Power Supply <\/td>\n<\/tr>\n
152<\/td>\nTable 15 Typical Nonredundant 34 UPS Performance Specifications <\/td>\n<\/tr>\n
154<\/td>\nRedundant Uninterruptible Power Supply
Fig 39 Oscillogram of System in Fig 38 with Powerline Failure <\/td>\n<\/tr>\n
155<\/td>\nFig 40 Redundant Uninterruptible Power Supply
Failure
Fig 42 Uninterruptible Power Supply with Static Transfer Switch <\/td>\n<\/tr>\n
156<\/td>\nTransfer Switch
Parallel Redundant Uninterruptible Power Supply
Cold Standby Redundant Power Supply
Fig 43 Oscillogram of Static Switch in System in Fig 42 Load Voltage <\/td>\n<\/tr>\n
157<\/td>\nFig 44 Parallel-Supplied Parallel Redundant Uninterruptible Power Supply
Fig 45 Cold Standby Redundant Uninterruptible Power Supply <\/td>\n<\/tr>\n
158<\/td>\nWith Static Bypass Switch
Motor-Generators and Rotating UPS Systems
5.5.1 Introduction <\/td>\n<\/tr>\n
159<\/td>\nFig 46 Parallel-Supplied Nonredundant Uninterruptible Power Supply <\/td>\n<\/tr>\n
160<\/td>\n5.5.2 AC Motor-Generators
and Belt <\/td>\n<\/tr>\n
161<\/td>\nAC Motor-Generator with Flywheel
Frames on a Base
Fig 49 Motor and Generator with Common Rotor <\/td>\n<\/tr>\n
162<\/td>\nBattery\/DC Motor\/AC Motor-Generator Set
Fig 50 Battery\/DC Motor\/AC Motor-Generator Set <\/td>\n<\/tr>\n
163<\/td>\nBattery\/DC Motor\/AC Generator
Fig 51 Battery\/DC Motor\/AC Generator <\/td>\n<\/tr>\n
164<\/td>\nOff-Line Inverter\/Motor-Generator System
On-Line Inverter\/Motor-Generator System
5.5.8 Engine\/Motor-Generator System
Fig 52 Off-Line Inverter\/Motor-Generator System <\/td>\n<\/tr>\n
165<\/td>\nFig 53 On-Line Inverter\/Motor-Generator System
Fig 54 Engine\/Motor-Generator System <\/td>\n<\/tr>\n
166<\/td>\n5.5.9 Engine-Generator\/Motor-Generator System
Fig 55 Engine-Generator\/Motor-Generator System <\/td>\n<\/tr>\n
167<\/td>\n5.5.10 Parallel Systems
Redundant Systems
5.5.12 Bypass Circuits
5.6 References <\/td>\n<\/tr>\n
168<\/td>\n5.7 Bibliography <\/td>\n<\/tr>\n
172<\/td>\n6 Protection
6.1 Introduction
Short-circuit Current Considerations <\/td>\n<\/tr>\n
174<\/td>\nFig 56 Three-phase Decrement Curves for Engine-Generators <\/td>\n<\/tr>\n
175<\/td>\nBreakers in Series <\/td>\n<\/tr>\n
176<\/td>\nFig 58 Three-phase Decrements for 900 kW Turbine Generator <\/td>\n<\/tr>\n
177<\/td>\n6.3 Transfer Devices
Codes and Standards
Current Withstand Ratings <\/td>\n<\/tr>\n
178<\/td>\nSignificance of X\/R Ratio <\/td>\n<\/tr>\n
179<\/td>\nWithstand Ratings with Respect to Time
Switches <\/td>\n<\/tr>\n
180<\/td>\nRequirements
Table 18 Automatic Transfer Switch Withstand Requirements
Table 19 Fuse Interrupting Test Requirements <\/td>\n<\/tr>\n
181<\/td>\nTransfer Switch Dielectric Strength <\/td>\n<\/tr>\n
182<\/td>\nProtection with Circuit Breakers
Table 20 Typical Transfer Switch Characteristics When Used with Fuses <\/td>\n<\/tr>\n
183<\/td>\nFig 59 Emergency Power System with All Circuit Breaker Protection
Circuit Breaker Protection <\/td>\n<\/tr>\n
184<\/td>\nProtection with Fuses <\/td>\n<\/tr>\n
185<\/td>\n6.3.8 Ground-Fault Protection
Fig 61 Emergency Power System with All-Fuse Protection <\/td>\n<\/tr>\n
186<\/td>\n6.4 Generator Protection
Protection <\/td>\n<\/tr>\n
187<\/td>\nCodes and Standards
Armature Winding Protection <\/td>\n<\/tr>\n
189<\/td>\nRelative to Generator-Capability Curves <\/td>\n<\/tr>\n
191<\/td>\nShort-circuit Current <\/td>\n<\/tr>\n
195<\/td>\nRotor and Excitation System
Prime Mover Protection
6.5.1 General Requirements <\/td>\n<\/tr>\n
196<\/td>\nEquipment Malfunction Protection <\/td>\n<\/tr>\n
197<\/td>\nFuel System Protection <\/td>\n<\/tr>\n
198<\/td>\nElectric Utility Power Supply <\/td>\n<\/tr>\n
199<\/td>\nUninterruptible Power Supply (UPS)
6.7.1 Battery Protection <\/td>\n<\/tr>\n
201<\/td>\nBatteries <\/td>\n<\/tr>\n
203<\/td>\nBattery Charger Protection <\/td>\n<\/tr>\n
204<\/td>\n6.7.3 Inverter Protection <\/td>\n<\/tr>\n
205<\/td>\nStatic Transfer Switch Protection <\/td>\n<\/tr>\n
206<\/td>\n6.7.5 Overvoltage Protection <\/td>\n<\/tr>\n
207<\/td>\nEquipment Physical Protection
6.9 Grounding
6.10 Conclusions <\/td>\n<\/tr>\n
208<\/td>\n6.11 References <\/td>\n<\/tr>\n
209<\/td>\n6.12 Bibliography <\/td>\n<\/tr>\n
210<\/td>\n7 Grounding
7.1 Introduction
7.1.1 General
Circuit Protective Equipment
System and Equipment Grounding <\/td>\n<\/tr>\n
211<\/td>\nSystem and Equipment Grounding Functions
7.2.1 General
System Grounding Functions
Equipment Grounding Functions <\/td>\n<\/tr>\n
212<\/td>\nService-Supplied System <\/td>\n<\/tr>\n
213<\/td>\nDerived System
System <\/td>\n<\/tr>\n
214<\/td>\nSupplemental Equipment Bonding
Objectionable Current Through Grounding Conductors <\/td>\n<\/tr>\n
215<\/td>\nService Conductor
Grounded Circuit Conductor <\/td>\n<\/tr>\n
216<\/td>\nSystem Grounding Requirements
Types of Equipment Grounding Conductors <\/td>\n<\/tr>\n
217<\/td>\nGrounding for Separately Derived and Service-Supplied Systems
Systems <\/td>\n<\/tr>\n
218<\/td>\nService-Supplied Systems <\/td>\n<\/tr>\n
219<\/td>\nSystems with a Grounded Circuit Conductor
Solidly Interconnected Multiple-Grounded Neutral <\/td>\n<\/tr>\n
220<\/td>\nEquipment and at Source of Alternate Power Supply <\/td>\n<\/tr>\n
221<\/td>\nNeutral Conductor Transferred by Transfer Means
Two Locations <\/td>\n<\/tr>\n
222<\/td>\nGrounded at Two Locations <\/td>\n<\/tr>\n
223<\/td>\nGrounded at Two Locations <\/td>\n<\/tr>\n
224<\/td>\nand at Source of Alternate Power Supply <\/td>\n<\/tr>\n
225<\/td>\nNeutral Conductor <\/td>\n<\/tr>\n
226<\/td>\nNeutral Conductor Isolated by a Transformer
Switchgear for Two On-Site Generators Connected in Parallel <\/td>\n<\/tr>\n
227<\/td>\nTransformer <\/td>\n<\/tr>\n
228<\/td>\nService Equipment Only
Transformer <\/td>\n<\/tr>\n
229<\/td>\nEquipment Only <\/td>\n<\/tr>\n
230<\/td>\nGround Fault Indicated Though None Exists <\/td>\n<\/tr>\n
231<\/td>\nMultiple Transfer Switches
Neutral Conductor Grounded at Service Equipment Only <\/td>\n<\/tr>\n
232<\/td>\nMultiple Engine-Generator Sets
Transferring Neutral Conductor <\/td>\n<\/tr>\n
233<\/td>\n7.10 Ground-Fault Alarm
7.11 Systems Without a Grounded Circuit Circuit Conductor
Solidly Grounded Service <\/td>\n<\/tr>\n
234<\/td>\nWithout a Grounded Circuit Conductor <\/td>\n<\/tr>\n
235<\/td>\nHigh-Resistance Grounded Service
Supply Without a Grounded Circuit Conductor <\/td>\n<\/tr>\n
236<\/td>\nGrounded Circuit Conductor <\/td>\n<\/tr>\n
237<\/td>\n7.12 Mobile Engine-Generator Sets
Alternate Supply <\/td>\n<\/tr>\n
238<\/td>\nAlternate Supply <\/td>\n<\/tr>\n
239<\/td>\n7.13 References
7.14 Bibliography <\/td>\n<\/tr>\n
242<\/td>\n8 Maintenance
8.1 Introduction <\/td>\n<\/tr>\n
243<\/td>\nInternal Conbustion Engines
Typical Maintenance Schedule <\/td>\n<\/tr>\n
244<\/td>\n8.3 Gas Turbine
8.3.1 General
Operating Factors Affecting Maintenance <\/td>\n<\/tr>\n
245<\/td>\nTypical Maintenance Schedule <\/td>\n<\/tr>\n
246<\/td>\n8.4 Generators <\/td>\n<\/tr>\n
247<\/td>\nStatic Uninterruptible Power Supplies <\/td>\n<\/tr>\n
248<\/td>\n8.6 Batteries
8.6.1 General
8.6.2 Safety
8.6.3 BatteryTypes
Typical Maintenance Schedules <\/td>\n<\/tr>\n
249<\/td>\nAutomatic Transfer Switches
8.8 Conclusions
8.9 References <\/td>\n<\/tr>\n
250<\/td>\n9 Specific Industry Applications <\/td>\n<\/tr>\n
253<\/td>\nNeeds for the Agri-Business Industry <\/td>\n<\/tr>\n
254<\/td>\nNeeds for the Cement Industry <\/td>\n<\/tr>\n
255<\/td>\nNeeds for the Commercial Building Industry <\/td>\n<\/tr>\n
257<\/td>\nNeeds for the Communications Industry <\/td>\n<\/tr>\n
258<\/td>\nNeeds for the Financial Data Processing Industry <\/td>\n<\/tr>\n
259<\/td>\nNeeds for the Health Industry <\/td>\n<\/tr>\n
260<\/td>\nNeeds for the Mining Industry <\/td>\n<\/tr>\n
261<\/td>\nNeeds for the Petrochemical Industry <\/td>\n<\/tr>\n
262<\/td>\nNeeds for the Ski Resort Industry <\/td>\n<\/tr>\n
263<\/td>\nNeeds for the Waste Water Industry <\/td>\n<\/tr>\n
273<\/td>\nINDEX <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

IEEE Recommended Practice for Emergency and Standby Power Systems for Industrial and Commerical Applications<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
IEEE<\/b><\/a><\/td>\n1987<\/td>\n273<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":398620,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[2644],"product_tag":[],"class_list":{"0":"post-398617","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-ieee","8":"first","9":"instock","10":"sold-individually","11":"shipping-taxable","12":"purchasable","13":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/398617","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/398620"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=398617"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=398617"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=398617"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}