{"id":380758,"date":"2024-10-20T03:08:20","date_gmt":"2024-10-20T03:08:20","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-en-iec-61757-2-12021\/"},"modified":"2024-10-26T05:40:56","modified_gmt":"2024-10-26T05:40:56","slug":"bs-en-iec-61757-2-12021","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-en-iec-61757-2-12021\/","title":{"rendered":"BS EN IEC 61757-2-1:2021"},"content":{"rendered":"
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
2<\/td>\n | undefined <\/td>\n<\/tr>\n | ||||||
5<\/td>\n | Annex ZA (normative)Normative references to international publicationswith their corresponding European publications <\/td>\n<\/tr>\n | ||||||
7<\/td>\n | English CONTENTS <\/td>\n<\/tr>\n | ||||||
9<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | 1 Scope 2 Normative references 3 Terms, definitions, abbreviated terms and symbols of quantities <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | 3.1 Terms and definitions <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 3.2 Abbreviated terms <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 3.3 Symbols of quantities <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | 4 Design and characteristics of an FBG temperature sensor 4.1 Fibre Bragg grating (FBG) 4.2 Dependence of Bragg wavelength on temperature <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | 4.3 Design features 5 Performance parameters <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | 6 Test apparatuses for performance parameter determination 6.1 Temperature calibration equipment Table 1 \u2013 Calibration bath fluids <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | 6.2 Optical spectrum analyzer and interrogator 6.3 Broadband light source 7 Test procedures of performance parameters 7.1 Sample preparation and test set-up <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | 7.2 Bragg wavelength \u03bbBref 7.2.1 Measuring procedure Figures Figure 1 \u2013 Principal test set-up for FBG <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 7.2.2 Evaluation 7.2.3 Reporting 7.3 FBG peak spectral width 7.3.1 Measuring procedure 7.3.2 Evaluation 7.3.3 Reporting 7.4 FBG reflectivity 7.4.1 Measuring procedure 7.4.2 Evaluation <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 7.4.3 Reporting 7.5 Side-lobe suppression ratio 7.5.1 Measuring procedure Figure 2 \u2013 Determination of the FBG reflectivity from the reflectionspectrum (left) and transmission spectrum (right) <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | 7.5.2 Evaluation 7.5.3 Reporting Figure 3 \u2013 Side-lobes in the case of a single FBG temperature sensor <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | 7.6 Signal-to-noise ratio 7.6.1 Measuring procedure 7.6.2 Evaluation 7.6.3 Reporting Figure 4 \u2013 Signal-to-noise ratio determination <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | 7.7 Characteristic curve 7.7.1 Measuring procedure <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 7.7.2 Evaluation <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | Figure 5 \u2013 Example of a polynomial fit of calibration points \u03bbB,i(TN,i) <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | Figure 6 \u2013 Example of a third-order polynomial fit <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | Figure 7 \u2013 Example of a fourth-order polynomial fit <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | 7.7.3 Reporting Figure 8 \u2013 Example of a polynomial fit of the sensitivity <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | 7.8 Thermal time constant 7.8.1 Measuring procedure 7.8.2 Evaluation 7.8.3 Reporting Figure 9 \u2013 Typical response time curve <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | 7.9 Sensor stability 7.9.1 Measuring procedure 7.9.2 Evaluation 7.9.3 Reporting <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | Annex A (informative)Blank detail specification A.1 General A.2 Mechanical and optical set-up A.3 Operational characteristics <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | A.4 Limiting parameters A.5 Further information given upon request <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | Annex B (informative)Examples of specific temperature calibration equipment B.1 Simple liquid bath Figure B.1 \u2013 Schematic representation of a simple liquid bath [3] <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | B.2 Liquid tube-thermostat Figure B.2 \u2013 Schematic representation of liquid calibrationdevice for connection to laboratory liquid thermostats [4] <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | B.3 Solid-state calibration equipment Figure B.3 \u2013 Schematic representation ofa long-tube fluid calibration device [3] <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | Figure B.4 \u2013 Schematic representation of a solid-statecalibration device for higher temperatures [4] <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | Figure B.5 \u2013 Schematic representation of a dry-block calibrator forcalibrating an FBG temperature sensor at higher temperatures <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | Annex C (informative)Contributions to measurement uncertainty <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Fibre optic sensors – Temperature measurement. Temperature sensors based on fibre Bragg gratings<\/b><\/p>\n |