{"id":255334,"date":"2024-10-19T16:52:42","date_gmt":"2024-10-19T16:52:42","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bsi-pd-iec-tr-61850-90-122015\/"},"modified":"2024-10-25T12:19:45","modified_gmt":"2024-10-25T12:19:45","slug":"bsi-pd-iec-tr-61850-90-122015","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bsi-pd-iec-tr-61850-90-122015\/","title":{"rendered":"BSI PD IEC\/TR 61850-90-12:2015"},"content":{"rendered":"
This Technical Report is intended for an audience familiar with electrical power automation based on IEC 61850 and particularly for data network engineers and system integrators. It is intended to help them to understand the technologies, configure a wide area network, define requirements, write specifications, select components and conduct tests.<\/p>\n
This Technical Report provides definitions, guidelines, and recommendations for the engineering of WANs, in particular for protection, control and monitoring based on IEC 61850 and related standards.<\/p>\n
This Technical Report addresses substation-to-substation communication, substation-to-control centre and control centre-to-control centre communication. In particular, this Technical Report addresses the most critical aspects of IEC 61850 such as protection related data transmission via GOOSE and SMVs, and the multicast transfer of large volumes of synchrophasor data.<\/p>\n
The Technical Report addresses issues such as topology, redundancy, traffic latency and quality of service, traffic management, clock synchronization, security and maintenance of the network.<\/p>\n
This Technical Report contains use cases that show how utilities tackle their WAN engineering.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
4<\/td>\n | CONTENTS <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 1 Scope 2 Normative references <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | 3 Terms, definitions, abbreviations, acronyms and symbols 3.1 Terms and definitions <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | 3.2 Abbreviations and acronyms <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | 3.3 Network diagram symbols <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | Figures Figure 1 \u2013 Symbols <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | 4 Wide Area Communication in electrical utilities 4.1 Executive summary <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | 4.2 Use Case: ENDESA, Andalusia (Spain) Figure 2 \u2013 Substation locations in Andalusia <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | Figure 3 \u2013 Topology of the Andalusia network <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | 4.3 Typical interface between a substation and the WAN Figure 4 \u2013 Cabinet of the substation edge node <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | 4.4 WAN characteristics and actors Figure 5 \u2013 Communication interfaces in a SEN <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | 4.5 SGAM Mapping Figure 6 \u2013 Communicating entities <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | Figure 7 \u2013 SGAM communication model <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | 4.6 Network elements and voltage level Figure 8 \u2013 Principle of grid voltage level and network technology <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | 4.7 WAN interfaces in substation automation (IEC\u00a061850-5) Figure 9 \u2013 Communication paths and interfaces <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | 4.8 Logical interfaces and protocols in the TC57 Architecture IEC\u00a0TR\u00a062357 Figure 10 \u2013 IEC\u00a0TR\u00a062357\u00a0Interfaces, protocols and applications <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | 4.9 Network traffic and ownership 5 WAN overall requirements and data transmission metrics 5.1 Traffic types <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | 5.2 Quality of Service (QoS) of TDM and PSN 5.3 Latency calculation 5.3.1 Latency components 5.3.2 Propagation delay <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | 5.3.3 Residence delay 5.3.4 Latency accumulation 5.3.5 Example: latency of a microwave system 5.3.6 Latency and determinism Figure 11 \u2013 Composition of end-to-end latency in a microwave relay <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | 5.3.7 Latency classes in IEC\u00a061850-5 Figure 12 \u2013 Example of latency in function of traffic <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | Tables Table 1 \u2013 Latency classes in IEC\u00a061850-5 Table 2 \u2013 Latency classes in IEC\u00a0TR\u00a061850-90-1 <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | 5.4 Jitter 5.4.1 Jitter definition Figure 13 \u2013 Jitter for two communication delay types. Table 3 \u2013 Latency classes for WANs <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | 5.4.2 Jitter classes in IEC\u00a061850 5.5 Latency symmetry and path congruency 5.6 Medium asymmetry Table 4 \u2013 Jitter classes in IEC\u00a0TR\u00a061850-90-1 Table 5 \u2013 Jitter classes for WAN <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | 5.7 Communication speed symmetry 5.8 Recovery delay 5.9 Time accuracy 5.9.1 Time accuracy definition Figure 14 \u2013 Precision and accuracy definitions Table 6 \u2013 Recovery delay classes for WAN <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | 5.9.2 Time accuracy classes Table 7 \u2013 IEC\u00a0TR\u00a061850-90-1 time accuracy classes Table 8 \u2013 IEC\u00a061850-5 time accuracy classes for IED synchronization <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | 5.10 Tolerance against failures 5.10.1 Failure 5.10.2 Reliability Table 9 \u2013 WAN time synchronization classes <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | 5.10.3 Redundancy principles 5.10.4 Redundancy and reliability <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | 5.10.5 Redundancy checking Figure 15 \u2013 Redundancy of redundant systems Figure 16 \u2013 Redundancy calculation <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | 5.10.6 Redundant layout: single point of failure 5.10.7 Redundant layout: cross-redundancy Figure 17 \u2013 Redundancy layout with single point of failure <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | 5.10.8 Maintainability 5.10.9 Availability Figure 18 \u2013 Redundancy layout with cross-coupling <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | Figure 19 \u2013 Availability definitions <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | 5.10.10 Integrity <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | Figure 20 \u2013 Residual error rate in function of the BER <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | 5.10.11 Dependability 5.10.12 Example: Dependability of GOOSE transmission 6 Applications analysis 6.1 Application kinds <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | 6.2 Teleprotection (IF2 & IF11) 6.2.1 Teleprotection schemes <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | 6.2.2 Teleprotection data kinds 6.2.3 Teleprotection requirements for latency 6.2.4 Teleprotection requirements for latency asymmetry 6.2.5 Teleprotection requirements for integrity Table 10 \u2013 Latency for line protection <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | 6.2.6 Teleprotection summary 6.3 Telecontrol (IF1, IF6) Table 11 \u2013 Summary of operational requirements of line protection Table 12 \u2013 Summary of communication requirements for teleprotection <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | 6.4 Substation to control centre (IF10) Table 13 \u2013 Communication requirements for CC to SS\/PS Table 14 \u2013 Latency and timing requirements from IEC\u00a0TR\u00a061850-90-2 <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | 6.5 CMD (IF7) 6.5.1 CMD overview 6.5.2 CMD communication requirements 6.6 Control Centre to Control Centre (IF12) Table 15 \u2013 Communication requirements for CMD <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | 6.7 Wide Area Monitoring System (IF13) 6.7.1 WAMS overview 6.7.2 WAMS topology Table 16 \u2013 Communication requirements for inter-control centre communications <\/td>\n<\/tr>\n | ||||||
71<\/td>\n | Figure 21 \u2013 Principle of synchrophasor transmission <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | 6.7.3 WAMS communication requirements Table 17 \u2013 Summary of synchrophasor requirements <\/td>\n<\/tr>\n | ||||||
73<\/td>\n | 6.8 Wide area monitoring, protection and control (WAMPAC) IF13 6.8.1 WAMPAC overview 6.8.2 WAMPAC communication requirements Figure 22 \u2013 Target phenomena for WAMPAC Table 18 \u2013 Summary of communication requirements for wide area monitoring <\/td>\n<\/tr>\n | ||||||
74<\/td>\n | Figure 23 \u2013 Example of main function and general information flow <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | 6.8.3 Use case WAMPAC Figure 24 \u2013 PMUs and data flow between TSO and regional data hubs Table 19 \u2013 Typical communication requirements for WAMPAC <\/td>\n<\/tr>\n | ||||||
76<\/td>\n | 6.9 Wind turbines and wind virtual power plants 6.10 Distributed Energy and Renewables (DER) 6.11 Summary of communication requirements for WAN Table 20 \u2013 Classification of communication requirements Table 21 \u2013 Communication requirements of wide-area applications <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | 7 Wide-area and real-time network technologies 7.1 Introduction 7.2 Topology <\/td>\n<\/tr>\n | ||||||
78<\/td>\n | 7.3 Overview Figure 25 \u2013 Network topology (Carrier Ethernet) <\/td>\n<\/tr>\n | ||||||
79<\/td>\n | Table 22 \u2013 Communication technologies <\/td>\n<\/tr>\n | ||||||
80<\/td>\n | 7.4 Layer 1 (physical) transmission media 7.4.1 Summary 7.4.2 Installation guidelines Table 23 \u2013 Physical communication media <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | 7.4.3 Metallic lines Table 24 \u2013 DSL communication over twisted pairs <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | 7.4.4 Power line carrier (PLC) Figure 26 \u2013 Phase-to-ground coupling for PLC Table 25 \u2013 Trade-offs in copper cable communication <\/td>\n<\/tr>\n | ||||||
83<\/td>\n | Figure 27 \u2013 HV PLC coupling with suspended line traps Figure 28 \u2013 Phase to phase signal coupling for PLC <\/td>\n<\/tr>\n | ||||||
84<\/td>\n | Figure 29 \u2013 Phase-to-phase signal coupling <\/td>\n<\/tr>\n | ||||||
85<\/td>\n | Figure 30 \u2013 Power line carrier, line traps Table 26 \u2013 PLC communication technologies <\/td>\n<\/tr>\n | ||||||
86<\/td>\n | 7.4.5 Radio transmission Table 27 \u2013 PLC communication advantages and disadvantages <\/td>\n<\/tr>\n | ||||||
87<\/td>\n | Figure 31 \u2013 Terrestrial microwave link <\/td>\n<\/tr>\n | ||||||
88<\/td>\n | Table 28 \u2013 Microwave link performance Table 29 \u2013 Terrestrial microwave advantages and disadvantages <\/td>\n<\/tr>\n | ||||||
89<\/td>\n | Table 30 \u2013 Public mobile radio technologies Table 31 \u2013 Terrestrial radio advantages and disadvantages Table 32 \u2013 Satellite radio advantages and disadvantages <\/td>\n<\/tr>\n | ||||||
90<\/td>\n | Figure 32 \u2013 Layer\u00a02 transport on radio systems <\/td>\n<\/tr>\n | ||||||
91<\/td>\n | 7.4.6 Fiber optics Figure 33 \u2013 Radio network in feeder automation <\/td>\n<\/tr>\n | ||||||
92<\/td>\n | Figure 34 \u2013 ADSS fiber cable <\/td>\n<\/tr>\n | ||||||
93<\/td>\n | Figure 35 \u2013 ADSS installation with splicing box Figure 36 \u2013 OPGW in ground cable <\/td>\n<\/tr>\n | ||||||
94<\/td>\n | Figure 37 \u2013 OPGW with two \u201cC\u201d-tubes with each 32 fibers <\/td>\n<\/tr>\n | ||||||
95<\/td>\n | Figure 38 \u2013 OPGW fibers <\/td>\n<\/tr>\n | ||||||
96<\/td>\n | Figure 39 \u2013 Splicing box <\/td>\n<\/tr>\n | ||||||
97<\/td>\n | Figure 40 \u2013 WDM over one fiber Figure 41 \u2013 OCh optical components <\/td>\n<\/tr>\n | ||||||
98<\/td>\n | 7.4.7 Layer 1 redundancy Table 33 \u2013 Optical fibers: advantages and disadvantages <\/td>\n<\/tr>\n | ||||||
99<\/td>\n | 7.4.8 Use case: Diverse redundancy against extreme contingencies (Hydro-Quebec) Figure 42 \u2013 Optical link with microwave back-up <\/td>\n<\/tr>\n | ||||||
100<\/td>\n | 7.4.9 Layer 1 security 7.5 Layer 1,5 (physical) multiplexing Figure 43 \u2013 Picture of partially destroyed 735 kV line <\/td>\n<\/tr>\n | ||||||
101<\/td>\n | 7.6 Layer\u00a02 (link) technologies 7.6.1 Telephony technologies <\/td>\n<\/tr>\n | ||||||
102<\/td>\n | Figure 44 \u2013 E1 and E2 channel Figure 45 \u2013 Digital Transmission Hierarchy (T \u2013 Standards) <\/td>\n<\/tr>\n | ||||||
103<\/td>\n | 7.6.2 SDH\/SONET Figure 46 \u2013 Digital Transmission Hierarchy (E-standard) <\/td>\n<\/tr>\n | ||||||
104<\/td>\n | Figure 47 \u2013 Example of an SDH network for utilities <\/td>\n<\/tr>\n | ||||||
105<\/td>\n | Figure 48 \u2013 SONET multiplexing hierarchy Figure 49 \u2013 SDH multiplexing hierarchy <\/td>\n<\/tr>\n | ||||||
106<\/td>\n | Table 34 \u2013 SONET and SDH hierarchies <\/td>\n<\/tr>\n | ||||||
107<\/td>\n | Figure 50 \u2013 SDH\/SONET with point-to-point topology Figure 51 \u2013 SDH\/SONET with linear topology <\/td>\n<\/tr>\n | ||||||
109<\/td>\n | Figure 52 \u2013 BLSR\/BSHR topology in normal conditions (from A to D) Figure 53 \u2013 BLSR\/BSHR topology in failure conditions <\/td>\n<\/tr>\n | ||||||
110<\/td>\n | Figure 54 \u2013 UPSR\/USHR topology in normal conditions <\/td>\n<\/tr>\n | ||||||
111<\/td>\n | Figure 55 \u2013 UPSR\/USHR topology in failure conditions <\/td>\n<\/tr>\n | ||||||
113<\/td>\n | 7.6.3 Optical Transport Network Table 35 \u2013 Summary of SDH\/SONET <\/td>\n<\/tr>\n | ||||||
114<\/td>\n | 7.6.4 Ethernet Figure 56 \u2013 Example of information flow relationship in OTN <\/td>\n<\/tr>\n | ||||||
115<\/td>\n | Figure 57 \u2013 IEEE\u00a0802.3 (Ethernet) frame format Table 36 \u2013 Ethernet physical layers <\/td>\n<\/tr>\n | ||||||
116<\/td>\n | Figure 58 \u2013 IEEE\u00a0802.3 (Ethernet) topology with RSTP switches (IEC\u00a0TR\u00a061850-90-4) <\/td>\n<\/tr>\n | ||||||
117<\/td>\n | Figure 59 \u2013 IEEE\u00a0802.1Q-tagged Ethernet frame format <\/td>\n<\/tr>\n | ||||||
118<\/td>\n | Figure 60 \u2013 Direct Ethernet with VLAN in substation-to-substation transmission <\/td>\n<\/tr>\n | ||||||
119<\/td>\n | Figure 61 \u2013 Substation-to-substation Layer\u00a02 transmission tunneled over IP <\/td>\n<\/tr>\n | ||||||
120<\/td>\n | Figure 62 \u2013 PRP structure (within and outside a substation) Figure 63 \u2013 HSR ring connecting substations and control centre <\/td>\n<\/tr>\n | ||||||
122<\/td>\n | Figure 64 \u2013 MACsec frame format <\/td>\n<\/tr>\n | ||||||
123<\/td>\n | Figure 65 \u2013 IEEE 802.1X principle <\/td>\n<\/tr>\n | ||||||
124<\/td>\n | 7.6.5 Ethernet over TDM Figure 66 \u2013 Ethernet for substation-to-substation communication <\/td>\n<\/tr>\n | ||||||
125<\/td>\n | 7.6.6 Carrier Ethernet Figure 67 \u2013 Packets over TDM Table 37 \u2013 Payload mapping using SDH\/SONET and Next Generation SDH\/SONET <\/td>\n<\/tr>\n | ||||||
127<\/td>\n | 7.6.7 Audio-Video Bridging 7.6.8 Provider Backbone Bridge (PBB) Table 38 \u2013 Carrier Ethernet summary <\/td>\n<\/tr>\n | ||||||
128<\/td>\n | Figure 68 \u2013 IEEE\u00a0802.1Q\/ad\/ah network configuration <\/td>\n<\/tr>\n | ||||||
129<\/td>\n | 7.6.9 Multiprotocol Label Switching (MPLS) Figure 69 \u2013 Case of IEEE\u00a0802.1Q\/ad network for utility <\/td>\n<\/tr>\n | ||||||
130<\/td>\n | Figure 70 \u2013 Basic MPLS architecture <\/td>\n<\/tr>\n | ||||||
131<\/td>\n | Figure 71 \u2013 Example of MPLS frame format with IPv4 payload <\/td>\n<\/tr>\n | ||||||
132<\/td>\n | Figure 72 \u2013 MPLS building blocks <\/td>\n<\/tr>\n | ||||||
133<\/td>\n | Figure 73 \u2013 MPLS network architecture for utilities <\/td>\n<\/tr>\n | ||||||
134<\/td>\n | Figure 74 \u2013 IP\/MPLS and MPLS-TP features <\/td>\n<\/tr>\n | ||||||
135<\/td>\n | Table 39 \u2013 IP\/MPLS characteristics <\/td>\n<\/tr>\n | ||||||
136<\/td>\n | Figure 75 \u2013 MPLS-TP redundant routing Table 40 \u2013 MPLS-TP characteristics <\/td>\n<\/tr>\n | ||||||
137<\/td>\n | 7.7 Layer\u00a03 (network) technologies 7.7.1 Internet Protocol (IP) Table 41 \u2013 MPLS summary <\/td>\n<\/tr>\n | ||||||
138<\/td>\n | Figure 76 \u2013 Ethernet frame with IP network header <\/td>\n<\/tr>\n | ||||||
139<\/td>\n | Figure 77 \u2013 Mapping of IPv4 to Ethernet frames <\/td>\n<\/tr>\n | ||||||
142<\/td>\n | Figure 78 \u2013 Mapping of IPv6 to Ethernet frames <\/td>\n<\/tr>\n | ||||||
143<\/td>\n | Figure 79 \u2013 IPv6 unicast address structure <\/td>\n<\/tr>\n | ||||||
144<\/td>\n | Figure 80 \u2013 IPv6 ULA address structure Figure 81 \u2013 IPv6 link local address structure <\/td>\n<\/tr>\n | ||||||
145<\/td>\n | Table 42 \u2013 Differences between IPv4 and IPv6 <\/td>\n<\/tr>\n | ||||||
146<\/td>\n | Table 43 \u2013 IPv6 versus IPv4 addresses [RFC\u00a04291] <\/td>\n<\/tr>\n | ||||||
147<\/td>\n | Figure 82 \u2013 Mapping of IPv4 to IPv6 addresses <\/td>\n<\/tr>\n | ||||||
149<\/td>\n | Figure 83 \u2013 IPv6 evolution <\/td>\n<\/tr>\n | ||||||
150<\/td>\n | 7.7.2 IP QoS Figure 84 \u2013 IEC\u00a061850 stack with IPv4 and IPv6 <\/td>\n<\/tr>\n | ||||||
152<\/td>\n | Figure 85 \u2013 DiffServ codepoint field Table 44 \u2013 List of DiffServ codepoint field values <\/td>\n<\/tr>\n | ||||||
153<\/td>\n | 7.7.3 IP multicast Figure 86 \u2013 Unidirectional protocol independent multicast <\/td>\n<\/tr>\n | ||||||
154<\/td>\n | 7.7.4 IP redundancy 7.7.5 IP security Figure 87 \u2013 Bidirectional protocol independent multicast <\/td>\n<\/tr>\n | ||||||
155<\/td>\n | Figure 88 \u2013 Frame format for IPsec (authenticated) Figure 89 \u2013 Frame format for IPsec (encrypted) <\/td>\n<\/tr>\n | ||||||
156<\/td>\n | 7.7.6 IP communication for utilities Figure 90 \u2013 Layer\u00a03 direct connection within same address space <\/td>\n<\/tr>\n | ||||||
157<\/td>\n | Figure 91 \u2013 Connecting substations to SCADA by a NAT <\/td>\n<\/tr>\n | ||||||
158<\/td>\n | 7.7.7 IP summary Figure 92 \u2013 Substation to SCADA connection over ALG Table 45 \u2013 IP Summary <\/td>\n<\/tr>\n | ||||||
159<\/td>\n | 7.8 Layer 4 (transport) protocols 7.8.1 Transport layer encapsulation 7.8.2 UDP Figure 93 \u2013 Ethernet frame with UDP transport layer <\/td>\n<\/tr>\n | ||||||
160<\/td>\n | 7.8.3 TCP Figure 94 \u2013 UDP header Figure 95 \u2013 TCP header <\/td>\n<\/tr>\n | ||||||
161<\/td>\n | 7.8.4 Layer 4 redundancy 7.8.5 Layer 4 security 7.9 Layer 5 (session) and higher 7.9.1 Session layer <\/td>\n<\/tr>\n | ||||||
162<\/td>\n | 7.9.2 Routable GOOSE and SMV 7.9.3 Example: C37.118 transmission Figure 96 \u2013 Session and presentation layers for MMS Figure 97 \u2013 Session and presentation layers for R-GOOSE <\/td>\n<\/tr>\n | ||||||
163<\/td>\n | 7.9.4 Session protocol for voice and video transmission 7.9.5 Application interface redundancy Figure 98 \u2013 IEEE\u00a0C37.118 frame over UDP Figure 99 \u2013 Redundant network transmission handled by the application layer <\/td>\n<\/tr>\n | ||||||
164<\/td>\n | 7.9.6 Application device redundancy 7.10 Protocol overlay \u2013 tunneling 7.10.1 Definitions <\/td>\n<\/tr>\n | ||||||
165<\/td>\n | 7.10.2 Tunneling principle 7.10.3 Tunneling Layer\u00a02 over Layer\u00a03 Figure 100 \u2013 Tunneling in IEC\u00a0TR\u00a061850-90-1 <\/td>\n<\/tr>\n | ||||||
166<\/td>\n | 7.10.4 Use Case: Tunneling GOOSE and SMV in IEC\u00a061850 Figure 101 \u2013 L2TP transporting Layer\u00a02 frames over IP <\/td>\n<\/tr>\n | ||||||
167<\/td>\n | 7.10.5 Circuit emulation service (CES) Figure 102 \u2013 Tunneling GOOSE over IP in IEC\u00a0TR\u00a061850-90-5 <\/td>\n<\/tr>\n | ||||||
168<\/td>\n | Figure 103 \u2013 Pseudo-wire principle <\/td>\n<\/tr>\n | ||||||
169<\/td>\n | Figure 104 \u2013 Non-IP voice communication over PSN <\/td>\n<\/tr>\n | ||||||
170<\/td>\n | Figure 105 \u2013 Circuit emulation over PSN <\/td>\n<\/tr>\n | ||||||
171<\/td>\n | 7.11 Virtual Private Networks (VPNs) 7.11.1 VPN principles 7.11.2 L2VPNs Table 46 \u2013 Pseudowire protocols <\/td>\n<\/tr>\n | ||||||
172<\/td>\n | Figure 106 \u2013 L2VPNs VPWS and VPLS <\/td>\n<\/tr>\n | ||||||
173<\/td>\n | 7.11.3 L2VPN multicast on MPLS 7.11.4 L3VPN Figure 107 \u2013 L3VPN <\/td>\n<\/tr>\n | ||||||
174<\/td>\n | Figure 108 \u2013 Emulation of L3VPN by L2VPN and global router <\/td>\n<\/tr>\n | ||||||
175<\/td>\n | 7.11.5 VPN mapping to application <\/td>\n<\/tr>\n | ||||||
176<\/td>\n | Figure 109 \u2013 Tele-protection over VPWS, Table 47 \u2013 VPN services <\/td>\n<\/tr>\n | ||||||
177<\/td>\n | Figure 110 \u2013 WAMS over VPLS <\/td>\n<\/tr>\n | ||||||
178<\/td>\n | 7.12 Cyber Security 7.12.1 Security circles Figure 111 \u2013 VPN for IP-based SCADA\/EMS traffic <\/td>\n<\/tr>\n | ||||||
179<\/td>\n | 7.12.2 Network security <\/td>\n<\/tr>\n | ||||||
181<\/td>\n | Figure 112 \u2013 VPN deployment options <\/td>\n<\/tr>\n | ||||||
182<\/td>\n | 7.12.3 Access Control 7.12.4 Threat detection and mitigation <\/td>\n<\/tr>\n | ||||||
183<\/td>\n | Figure 113 \u2013 IP network separator <\/td>\n<\/tr>\n | ||||||
186<\/td>\n | 7.12.5 Security architecture <\/td>\n<\/tr>\n | ||||||
187<\/td>\n | 7.12.6 Application (end-to-end) communication security Figure 114 \u2013 Security architecture (using segmentation and perimeter security) <\/td>\n<\/tr>\n | ||||||
188<\/td>\n | 7.12.7 Security for synchrophasor (PMU) networks (IEC\u00a0TR\u00a061850-90-5) Table 48 \u2013 IEC\u00a062351 series <\/td>\n<\/tr>\n | ||||||
189<\/td>\n | 7.12.8 Additional recommendations 7.13 QoS and application-specific engineering 7.13.1 General 7.13.2 SDH\/SONET QoS and SLA 7.13.3 PSN QoS and SLA <\/td>\n<\/tr>\n | ||||||
190<\/td>\n | 7.13.4 Application and priority 7.13.5 QoS chain between networks Table 49 \u2013 Example of simple application priority assignment <\/td>\n<\/tr>\n | ||||||
191<\/td>\n | 7.13.6 QoS mapping between networks Figure 115 \u2013 QoS chain <\/td>\n<\/tr>\n | ||||||
192<\/td>\n | 7.13.7 QoS engineering <\/td>\n<\/tr>\n | ||||||
193<\/td>\n | 7.13.8 Customer restrictions 7.13.9 Clock services 7.14 Configuration and OAM 7.14.1 Network configuration 7.14.2 OAM <\/td>\n<\/tr>\n | ||||||
195<\/td>\n | 7.15 Time synchronization 7.15.1 Oscillator stability 7.15.2 Mutual synchronization Table 50 \u2013 Typical oscillator stability <\/td>\n<\/tr>\n | ||||||
196<\/td>\n | 7.15.3 Direct synchronization 7.15.4 Radio synchronization Figure 116 \u2013 Timing pulse transmission methods of legacy teleprotection devices <\/td>\n<\/tr>\n | ||||||
197<\/td>\n | 7.15.5 GNSS synchronization 7.15.6 Frequency distribution Figure 117 \u2013 SyncE application <\/td>\n<\/tr>\n | ||||||
198<\/td>\n | 7.15.7 Time distribution Figure 118 \u2013 Synchronous Ethernet Architecture <\/td>\n<\/tr>\n | ||||||
199<\/td>\n | Figure 119 \u2013 SNTP clock synchronization and network delay measurement <\/td>\n<\/tr>\n | ||||||
202<\/td>\n | Figure 120 \u2013 Model of GMC, two BCs in series and SC over Layer\u00a03 Figure 121 \u2013 Timing diagram of PTP (end-to-end, 2-step, BCs) <\/td>\n<\/tr>\n | ||||||
203<\/td>\n | Figure 122 \u2013 Timing diagram of PTP (peer-to-peer, 2-step TCs) <\/td>\n<\/tr>\n | ||||||
204<\/td>\n | Table 51 \u2013 IEC\u00a061588 option comparison <\/td>\n<\/tr>\n | ||||||
205<\/td>\n | 7.15.8 PTP telecommunication profiles 7.15.9 PTP over MPLS 7.15.10 Comparison of time distribution profiles based on IEC\u00a061588 <\/td>\n<\/tr>\n | ||||||
206<\/td>\n | Table 52 \u2013 Precision time distribution protocols based on IEC\u00a061588 <\/td>\n<\/tr>\n | ||||||
207<\/td>\n | 7.15.11 Use Case: Synchrophasor time synchronization 7.15.12 Use case: Atomic Clock Hierarchy Figure 123 \u2013 Substations synchronization over WAN <\/td>\n<\/tr>\n | ||||||
208<\/td>\n | 8 Use cases 8.1 Use case: Current differential teleprotection system (Japan) Figure 124 \u2013 Example of synchronization network <\/td>\n<\/tr>\n | ||||||
209<\/td>\n | Figure 125 \u2013 Current differential 1:1 configuration Figure 126 \u2013 Network configuration for centralized multi-terminal line protection <\/td>\n<\/tr>\n | ||||||
210<\/td>\n | Figure 127 \u2013 Network configuration for distributed multi-terminal line protection Figure 128 \u2013 Current differential teleprotection for HV multi-terminal transmission line using Layer 2 network <\/td>\n<\/tr>\n | ||||||
212<\/td>\n | 8.2 Use case: SDH \/ MPLS network (Japan) Figure 129 \u2013 Configuration of wide area current differential primary and backup teleprotection system employing Carrier Ethernet and IEC\u00a061588 time synchronization <\/td>\n<\/tr>\n | ||||||
213<\/td>\n | 8.3 Use Case: Wide area stabilizing control system (Japan) Figure 130 \u2013 Achieving protection for teleprotection services Table 53 \u2013 Requirements for the YONDEN IP network Table 54 \u2013 Technologies for the YONDEN IP network <\/td>\n<\/tr>\n | ||||||
214<\/td>\n | Figure 131 \u2013 System configuration for wide area stabilizing control system <\/td>\n<\/tr>\n | ||||||
215<\/td>\n | 8.4 Use Case: experimental PMU-based WAMPAC system Figure 132 \u2013 Appearance of typical CCE cabinet Table 55 \u2013 Main system specifications for wide area stabilizing control system <\/td>\n<\/tr>\n | ||||||
216<\/td>\n | Figure 133 \u2013 Configuration for PMU-based WAMPAC system <\/td>\n<\/tr>\n | ||||||
217<\/td>\n | Table 56 \u2013 Specifications for PMU-based WAMPAC system <\/td>\n<\/tr>\n | ||||||
218<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Communication networks and systems for power utility automation – Wide area network engineering guidelines<\/b><\/p>\n |