Shopping Cart

No products in the cart.

BSI PD CEN/TR 17603-32-26:2022

$215.11

Space engineering. Spacecraft mechanical loads analysis handbook

Published By Publication Date Number of Pages
BSI 2022 506
Guaranteed Safe Checkout
Category:

If you have any questions, feel free to reach out to our online customer service team by clicking on the bottom right corner. We’re here to assist you 24/7.
Email:[email protected]

This document recommends engineering practices for European programs and projects. It may be cited in contracts and program documents as a reference for guidance to meet specific program/project needs and constraints. The target users of this handbook are engineers involved in design, analysis and verification of spacecraft and payloads in relation to general structural loads analysis issues. The current know‐how is documented in this handbook in order to make this expertise available to all European developers of space systems. It is a guidelines document; therefore it includes advisory information rather than requirements.

PDF Catalog

PDF Pages PDF Title
2 undefined
15 1 Scope
16 2 References
17 3 Terms, definitions and abbreviated terms
3.1 Terms from other documents
18 3.2 Terms specific to the present document
19 3.3 Abbreviated terms
23 4 Overview of the loads analysis process
4.1 Introduction
24 4.2 Loads cycles
25 4.3 Logic and sequence of loads analysis
26 4.4 Loads and verification approach (prototype or protoflight)
28 4.5 Loads and levels of assembly
29 4.6 Mechanical loads for design and verification
4.6.1 Spacecraft flight environments and dynamic loads
4.6.2 Vibration environments and frequency range
30 4.6.3 Introduction to analysis and test types for verifying mechanical requirements
32 4.6.4 Static and quasi-static loads
34 4.6.5 Static loads test
4.6.5.1 General
4.6.5.2 Example of strategy for defining the static test load cases
35 4.6.6 Spacecraft-launcher coupled loads analysis
36 4.6.7 Sine vibration
4.6.7.1 Overview
37 4.6.7.2 Spacecraft sine vibration test
38 4.6.8 Spacecraft design loads and test predictions versus LV/SC CLA results
39 4.6.9 Random vibration and vibro-acoustic environment
4.6.9.1 Random vibration analysis and testing
4.6.9.2 Vibro-acoustic response analysis
40 4.6.9.3 Acoustic testing
41 4.6.10 Shock testing
42 4.7 Basic principles, criteria and assumptions in structure and loads verification
4.7.1 Introduction
4.7.2 Equivalence criteria for loads and environments
44 4.7.3 Criteria for assessing verification loads
4.7.4 Main inconsistencies of the loads verification process
45 4.8 Notching in sine and random vibration testing
4.8.1 Introduction
46 4.8.2 Example of requirements
4.8.3 Basic principles
47 4.8.4 Response and force limiting
48 4.8.5 Criteria for notching justification
4.8.5.1 Overview
4.8.5.2 Primary notching in sine vibration test
49 4.8.5.3 Secondary notching in sine vibration test
4.8.5.4 Primary notching in random vibration test
4.8.5.5 Secondary notching in random vibration test
50 4.8.5.6 Notching and verification approach (prototype or protoflight)
4.8.5.7 Reporting
4.8.6 Conclusions on notching in sine and random vibration testing
51 4.9 References
52 5 Background on structural dynamics
5.1 Introduction
5.1.1 The dynamic environment
53 5.1.2 Types of structural analysis
5.1.3 List of topics
54 5.1.4 Principal notations
5.1.4.1 Matrix conventions
5.1.4.2 Scalars or matrices
55 5.1.4.3 Subscripts
5.1.4.4 Other notations
56 5.2 Dynamic environments – analysis and specifications
5.2.1 Generalities
57 5.2.2 Example – the maiden flight of Ariane 1
59 5.2.3 Sine environment
5.2.3.1 Characterisation
60 5.2.3.2 Response of the 1-DOF system
61 5.2.3.3 Influence of the sweep rate
64 5.2.4 Transient environment
5.2.4.1 Characterisation
5.2.4.2 Response of the 1-DOF system
5.2.4.3 Shock response spectra
67 5.2.5 Random environment
5.2.5.1 Random process
69 5.2.5.2 Frequency characterisation
71 5.2.5.3 Response of the 1-DOF system
73 5.2.5.4 Shock response spectra for random environments
76 5.2.6 Sine-equivalent dynamics
5.2.6.1 Introduction
5.2.6.2 Sine-equivalent level
78 5.2.6.3 Influence of damping
80 5.2.6.4 Impact of “non-dynamic” effects on SRS calculation
85 5.2.6.5 Remarks and limitations
5.2.7 Combined environments
5.2.7.1 Introduction
86 5.2.7.2 Combination of X, Y, Z sine loads
5.2.7.3 Combination of sine and random loads
5.2.7.4 Combination of static and dynamic load cases
88 5.3 Dynamic analysis
5.3.1 Frequency domain analysis
5.3.1.1 Frequency response functions
5.3.1.2 Responses from frequency response functions
89 5.3.1.3 Fundamental frequency response functions
90 5.3.2 Modal approach
5.3.2.1 Introduction
5.3.2.2 Modal effective parameters
93 5.3.2.3 Mode superposition
94 5.3.3 Effective mass models
5.3.3.1 Elaboration of effective mass models
5.3.3.2 Use of effective mass models
95 5.3.4 Craig-Bampton models
5.3.4.1 Modal synthesis
96 5.3.4.2 Craig-Bampton reduction
97 5.3.4.3 Mode displacement method
5.3.4.4 Mode acceleration method
98 5.3.4.5 Modal truncation augmentation method
99 5.3.4.6 Interface loads and CoG accelerations
102 5.3.4.7 Damping
104 5.3.4.8 Equivalent damping methods
106 5.3.4.9 Static and dynamic contributions
107 5.3.4.10 Sensitivity Analysis
108 5.3.4.11 Assembly of condensed models
109 5.4 Coupled analysis and notching in sine tests
5.4.1 FRF coupling
110 5.4.2 Modal approach
111 5.4.3 Simple example
113 5.4.4 Use of the shock response spectrum
5.4.4.1 Introduction
5.4.4.2 Methodology
114 5.4.4.3 Simple example
115 5.4.4.4 LV/SC example
117 5.5 Primary and secondary notching
5.5.1 Modes concerned by primary notching
5.5.2 Secondary notching
118 5.5.3 Simple example
120 5.5.4 Conclusions on notching in sine tests
5.6 Random tests
5.6.1 Issues on random tests
121 5.6.2 Mechanical equivalence example
123 5.6.3 Notching in random vibration tests
126 5.7 Practical aspects of modal effective masses
128 5.8 Conclusions
5.9 References
131 6 Launcher / spacecraft coupled loads analysis
6.1 Introduction
6.1.1 General aspects
132 6.1.2 Launch loads and terminology used in the CLA process
134 6.1.3 The role of the CLA within the loads cycle
135 6.2 The phases of the CLA process
6.2.1 Introduction
136 6.2.2 Parameters driving the CLA process
6.2.3 Mathematical model verification and database integration
6.2.4 Finite element model reduction
137 6.2.5 Checks on the Craig-Bampton matrices and OTM
6.2.6 Frequency cut-off for computed modes
6.2.7 Coupling of the launcher and spacecraft models
6.2.8 Calculation of the generalized responses
6.2.9 Determination of the physical responses
6.2.10 Post-processing
138 6.2.11 Uncertainty factors
139 6.3 CLA output and results evaluation
6.3.1 Overview
140 6.3.2 Guidelines to response parameter selection
6.3.3 Equivalent sine input
6.3.4 Computation of static components from OTM
141 6.3.5 Relative displacements
6.3.6 Interface mechanical fluxes and overfluxes
6.3.6.1 Introduction
142 6.3.6.2 Theoretical interface fluxes and overfluxes
144 6.3.6.3 Clamp band tension assessment
146 6.3.6.4 Example of clamp band assessment
6.3.7 Results review, verification and validation
147 6.3.8 Use of CLA results for structural verification
6.3.9 Reporting
150 6.4 Ariane 5 coupled loads analysis
6.4.1 Introduction to Ariane 5 CLA
151 6.4.2 Mission analysis organization and management
152 6.4.3 CLA events and load cases
6.4.3.1 Overview
154 6.4.3.2 Blast waves – Ariane 5 example
155 6.4.3.3 Boosters pressure oscillations – Ariane 5 example
161 6.4.4 Concomitant events and load cases combination
162 6.4.5 Flight phases and CLA standard load cases
6.4.5.1 Introduction
6.4.5.2 SRB ignition – Lift-off
163 6.4.5.3 Transonic
6.4.5.4 Third acoustic mode event
164 6.4.5.5 SRB end of flight
165 6.4.5.6 SRB jettisoning
6.4.6 Aspects of the Ariane 5 CLA methodology
167 6.5 The Arianespace spacecraft qualification process
6.5.1 Introduction
168 6.5.2 Quasi-static loads
170 6.5.3 Dynamic environment
6.5.3.1 Overview of the dynamic environment qualification process
171 6.5.3.2 Spacecraft sine tests
173 6.5.3.3 FCLA predictions versus sine test results
174 6.5.3.4 Examples
176 6.6 Space Shuttle coupled loads analysis
6.6.1 Overview
177 6.6.2 CLA load events
178 6.6.3 Elements of the design and verification process for Space Shuttle payloads
6.6.3.1 Coupled loads analysis and load cycles
6.6.3.2 Cargo Element FEM validation process
180 6.6.3.3 Load combination
181 6.7 References
182 7 Static loads
7.1 Introduction
7.2 Quasi-static loads
7.2.1 General aspects
183 7.2.2 Equivalence between dynamic conditions and CoG net accelerations
184 7.2.3 Quasi-static loads specification
186 7.2.4 Prediction of QSL and mechanical environment by base-drive analysis
7.3 Static test philosophy and objectives
187 7.4 Definition of static test configuration and load cases
7.4.1 Introduction
188 7.4.2 Boundary conditions
7.4.3 Loading systems
189 7.4.4 Load cases
190 7.4.5 Instrumentation
7.5 Static test evaluation
192 7.6 References
201 8 Sine vibration
8.1 Introduction
8.2 Sine vibration levels specification
8.2.1 Sine loads for spacecraft
202 8.2.2 Sine loads for payload and equipment
203 8.3 Simulation / test prediction
8.3.1 Introduction
8.3.2 Boundary conditions
204 8.3.3 Damping
8.3.4 Notch assessment
205 8.4 Sine vibration test
8.4.1 Objectives
206 8.4.2 Notching process
208 8.4.3 Test preparation
8.4.3.1 Introduction
209 8.4.3.2 Test configuration
210 8.4.3.3 Test sequence
211 8.4.3.4 Test success criteria
8.4.3.5 Instrumentation improvement procedures
213 8.4.3.6 Shaker selection
214 8.4.3.7 Test preparation procedures
221 8.4.4 Sine test campaign
8.4.4.1 Pre-test tasks
222 8.4.4.2 Test data assessment
224 8.4.4.3 Transfer functions and test data exploitation
228 8.4.4.4 Higher level prediction
229 8.4.4.5 Run sheet consolidation
231 8.5 References
232 9 Random vibration and vibro-acoustics
9.1 Introduction
9.1.1 Overview
233 9.1.2 Random vibration loads
9.1.3 Vibro-acoustic loads
9.1.3.1 Acoustic loads specification
235 9.1.3.2 Reverberant sound field
236 9.2 Requirements
9.3 Random vibration specification
9.3.1 Introduction
9.3.2 Component vibration environment predictor, Spann method
238 9.3.3 Specifications derived from random and vibro-acoustic test data
9.3.3.1 Introduction
239 9.3.3.2 Unit random testing
240 9.3.4 VibroSpec
9.3.4.1 Introduction
241 9.3.4.2 Database statistics
9.3.4.3 Example
242 9.3.5 Test/analysis extrapolation method
9.3.5.1 Introduction
9.3.5.2 Lift-off phase (reverberant noise):
243 9.3.5.3 Transonic phase (boundary layer noise):
9.3.5.4 Empirical random load factors
244 9.4 Random vibration analysis
9.4.1 Finite element analysis and Miles’ equation
245 9.4.2 Finite element analysis
247 9.4.3 Guidelines for FE random vibration response analysis
249 9.5 Random vibration testing
9.5.1 Introduction
9.5.2 Notching
9.5.2.1 Introduction
250 9.5.2.2 Notching of random test levels based on quasi-static design loads
256 9.5.2.3 Force limiting on ½ octave with quasi-static criterion
265 9.5.2.4 Semi-empirical force limiting specification: “Semi-empirical method”
266 9.6 Vibro-acoustic analysis
9.6.1 Introduction
9.6.2 Boundary element analysis
9.6.2.1 General aspects
267 9.6.2.2 Simulating a diffuse field as a superposition of a finite number of plane waves
9.6.2.3 Why the use of the boundary element method
268 9.6.2.4 Guidelines for vibro-acoustic response analysis by BE
269 9.6.3 Statistical energy analysis
9.6.3.1 General aspects
271 9.6.3.2 Guidelines statistical energy analysis models
272 9.6.4 General guidelines for vibro-acoustic analyses
274 9.7 Acoustic testing
9.7.1 Introduction
9.7.2 Test plan/procedure
9.7.2.1 Introduction
275 9.7.2.2 Test sequence
9.7.2.3 Test run specification
9.7.2.4 Input control
9.7.2.5 Sensor data
276 9.8 Verification of compliance
9.8.1 General aspects
277 9.8.2 An example based on the vibration response spectrum
280 9.9 Special topics in random vibration
9.9.1 Simulation of the random time series
283 9.9.2 Prediction of random acoustic vibration of equipment mounted on panels
9.9.2.1 SEA Analysis satellite equipment panel (NASA Lewis Method)
286 9.9.2.2 Panel wave speed, critical frequency and modal density
287 9.9.2.3 Panel radiation efficiency
9.9.3 Quick way to predict fatigue life (Steinberg method)
290 9.10 References
293 10 Shock
10.1 Introduction
10.2 Shock environment
294 10.3 Shock design and verification process
295 10.3.1 Shock input derivation to subsystems
296 10.3.2 Shock verification approach
299 10.3.3 Shock damage risk assessment
302 10.4 References
303 11 Dimensional stability
11.1 Introduction
304 11.2 Dimensional stability analysis
305 11.2.1 Thermo-elastic distortion analysis
11.2.1.1 Introduction
11.2.1.2 Thermo-elastic model verification
306 11.2.1.3 Specific thermo-elastic modelling aspects
308 11.2.1.4 Temperature mapping process
310 11.2.1.5 Thermo-elastic mathematical model correlation
312 11.2.2 1g-0g transition (gravity release)
313 11.2.3 Moisture absorption / release
315 11.3 Dimensional stability verification
11.3.1 Introduction
11.3.2 Thermal distortion test
11.3.2.1 General
316 11.3.2.2 Test objectives
11.3.2.3 Test setup and performance
317 11.3.2.4 Deformation measurements
321 11.3.2.5 Post-test activities
11.3.3 Gravity release test
322 11.4 Material property characterisation testing
11.4.1 Coefficient of Thermal Expansion (CTE) characterisation
323 11.4.2 Coefficient of Moisture Expansion (CME) characterisation
324 11.5 References
325 12 Fatigue and fracture control
12.1 Introduction
328 12.2 Definitions
12.3 List of events
332 12.4 Load spectra per event
12.4.1 General
12.4.2 Existing load curves
334 12.4.3 Measured load curves
336 12.4.4 Calculating load curves
12.4.4.1 Introduction
337 12.4.4.2 Calculating the response
338 12.4.4.3 Calculating the number of cycles
339 12.5 Generation of fatigue spectra
341 12.6 References
343 13 Micro-gravity and micro-vibrations
13.1 Introduction
13.1.1 Background
344 13.1.2 Scope
13.2 Micro-gravity
345 13.2.1 General aspects
13.2.1.1 Applicability
347 13.2.1.2 Micro-gravity system requirements definition
351 13.2.1.3 Identification of reference configuration and interfaces to micro-gravity payloads
352 13.2.1.4 Micro-gravity environment control activities
356 13.2.2 Derivation of micro-gravity specifications
357 13.2.2.1 Characterisation of the general structural micro-gravity transfer functions
359 13.2.2.2 Characterisation of the general vibro-acoustic transfer functions
361 13.2.2.3 Definition of the micro-gravity environment control budget
362 13.2.2.4 Definition of the micro-gravity force limits at micro-gravity disturbance sources location
364 13.2.3 Micro-gravity environment verification
365 13.2.3.1 System level micro-gravity environment verification
368 13.2.3.2 Equipment level micro-gravity environment verification
371 13.3 Micro-vibration
13.3.1 General aspects
373 13.3.2 Micro-vibration analysis
13.3.2.1 Introduction
13.3.2.2 Finite element model approach
377 13.3.2.3 Model requirements
13.3.2.4 General micro-vibration analysis flow
378 13.3.2.5 Power approach
379 13.3.2.6 Energy approach
381 13.3.3 Micro-vibration budget assessment
13.3.3.1 Introduction
382 13.3.3.2 Summation rules
383 13.3.3.3 Statistical approach
384 13.3.3.4 Envelope approach
13.3.4 Pointing error synthesis
385 13.3.5 Micro-vibration verification test
386 13.3.5.1 Test setup
387 13.3.5.2 Background noise
388 13.3.5.3 Test execution
389 13.3.5.4 Test data acquisition and evaluation
13.4 Micro-gravity and micro-vibration disturbance sources
13.4.1 Scope
13.4.2 Review of potential disturbance sources
390 13.4.2.1 Disturbance source classification
397 13.4.2.2 General aspects of disturbance attenuation and reduction
400 13.4.3 Characterisation of the disturbance sources forcing functions
13.4.3.1 General aspects
402 13.4.3.2 Determination of the disturbance forcing functions by analytical formulation
425 13.4.3.3 Determination of the disturbance forcing functions by test
437 13.5 References
439 14 Soft stowed packaging
14.1 Introduction
440 14.2 Packaging guidelines
441 14.3 Materials for packaging
14.3.1 Physical properties
14.3.1.1 Introduction
442 14.3.1.2 Minicel
444 14.3.1.3 Pyrell
445 14.3.1.4 Zotek
446 14.3.1.5 Plastazote
447 14.3.1.6 Bubble Wrap
14.3.1.7 Foam safety aspects
14.3.2 Attenuation data for foam packed items
14.3.2.1 Introduction
448 14.3.2.2 Accommodation in hard containers
451 14.3.2.3 Accommodation in strapped Cargo Transfer Bags (CTB)
453 14.4 Soft stowed equipment verification flow
14.4.1 Hardware categories and criticality
14.4.2 General verification aspects
14.4.2.1 Introduction
454 14.4.2.2 Strength verification
458 14.4.3 Off-the-shelf (OTS) items and already existing equipment
14.4.3.1 Introduction
14.4.3.2 Strength verification
459 14.4.3.3 Verification of compatibility with dynamic flight environments
460 14.4.4 New equipment / hardware
14.4.4.1 Design of new equipment / hardware
14.4.4.2 Qualification of new equipment / hardware
465 14.2 References
466 15 Nonlinear structures
15.1 Introduction
15.2 Common spacecraft structure nonlinearities
467 15.2.2 Damping
468 15.2.3 Contact
469 15.2.4 Nonlinear stiffness
470 15.3 Nonlinearity detection
471 15.4 Handling of spacecraft structure nonlinearities
15.4.1 Introduction
472 15.4.2 Guidelines for testing
15.4.2.1 Suitable excitation signals
473 15.4.2.2 Vibration control strategy
15.4.2.3 Test instrumentation
474 15.4.2.4 Data sampling and time recording
15.4.3 Nonlinearity characterisation and parameter estimation
476 15.4.4 Guidelines for structure modelling and analysis
15.4.4.1 Understanding the nonlinear model behaviour
477 15.4.4.2 Model condensation
15.4.4.3 Damping assumptions
479 15.4.4.4 Nonlinear stiffness definition
480 15.4.4.5 Influence of gravity effects
15.4.4.6 Nonlinear stiffness parameters
15.4.4.7 Control simulation
481 15.4.5 Impact of nonlinearities on CLA flight load predictions
483 15.5 References
484 16 Finite element models
16.1 Introduction
485 16.2 Requirements for structure mathematical models
16.3 Introduction to V&V in computational mechanics
488 16.4 Spacecraft finite element model complexity and validation test
489 16.5 Uncertainty quantification during load cycles
16.5.1 Overview
16.5.2 Dynamic variability or uncertainty factor Kv
16.5.2.1 Introduction
490 16.5.2.2 Phase B load criteria development and PDR load cycle
16.5.2.3 CDR load cycle
16.5.2.4 Preliminary verification load cycle
491 16.5.2.5 Final verification load cycle
16.5.3 Model factor KM
16.6 Verification and quality assurance for spacecraft finite element analysis
493 16.7 Mathematical model validation
16.7.1 General concepts and terminology
494 16.7.2 Why a mathematical model validation process
495 16.7.3 Categorization of the uncertainty and sources of disagreement between simulation and experimental outcomes
16.7.4 Specific aspects of the validation of spacecraft FEM for coupled loads analysis
16.7.4.1 Introductory aspects
496 16.7.4.2 Phases of the validation process
498 16.7.4.3 Mode shape correlation
499 16.7.4.4 Correlation criteria
500 16.7.5 Error localization and model updating by sensitivity and optimization
16.7.5.1 Parameter estimation
501 16.7.5.2 Modelling errors and selection of the updating parameters
16.7.5.3 Limitations of the “sensitivity and optimisation” approach
16.7.6 Specific aspects concerning base-drive sine vibration testing and “real-time” model validation
502 16.7.7 Stochastic approaches for model validation
503 16.8 References
BSI PD CEN/TR 17603-32-26:2022
$215.11