BSI PD CEN/TR 17603-32-26:2022
$215.11
Space engineering. Spacecraft mechanical loads analysis handbook
Published By | Publication Date | Number of Pages |
BSI | 2022 | 506 |
This document recommends engineering practices for European programs and projects. It may be cited in contracts and program documents as a reference for guidance to meet specific program/project needs and constraints. The target users of this handbook are engineers involved in design, analysis and verification of spacecraft and payloads in relation to general structural loads analysis issues. The current know‐how is documented in this handbook in order to make this expertise available to all European developers of space systems. It is a guidelines document; therefore it includes advisory information rather than requirements.
PDF Catalog
PDF Pages | PDF Title |
---|---|
2 | undefined |
15 | 1 Scope |
16 | 2 References |
17 | 3 Terms, definitions and abbreviated terms 3.1 Terms from other documents |
18 | 3.2 Terms specific to the present document |
19 | 3.3 Abbreviated terms |
23 | 4 Overview of the loads analysis process 4.1 Introduction |
24 | 4.2 Loads cycles |
25 | 4.3 Logic and sequence of loads analysis |
26 | 4.4 Loads and verification approach (prototype or protoflight) |
28 | 4.5 Loads and levels of assembly |
29 | 4.6 Mechanical loads for design and verification 4.6.1 Spacecraft flight environments and dynamic loads 4.6.2 Vibration environments and frequency range |
30 | 4.6.3 Introduction to analysis and test types for verifying mechanical requirements |
32 | 4.6.4 Static and quasi-static loads |
34 | 4.6.5 Static loads test 4.6.5.1 General 4.6.5.2 Example of strategy for defining the static test load cases |
35 | 4.6.6 Spacecraft-launcher coupled loads analysis |
36 | 4.6.7 Sine vibration 4.6.7.1 Overview |
37 | 4.6.7.2 Spacecraft sine vibration test |
38 | 4.6.8 Spacecraft design loads and test predictions versus LV/SC CLA results |
39 | 4.6.9 Random vibration and vibro-acoustic environment 4.6.9.1 Random vibration analysis and testing 4.6.9.2 Vibro-acoustic response analysis |
40 | 4.6.9.3 Acoustic testing |
41 | 4.6.10 Shock testing |
42 | 4.7 Basic principles, criteria and assumptions in structure and loads verification 4.7.1 Introduction 4.7.2 Equivalence criteria for loads and environments |
44 | 4.7.3 Criteria for assessing verification loads 4.7.4 Main inconsistencies of the loads verification process |
45 | 4.8 Notching in sine and random vibration testing 4.8.1 Introduction |
46 | 4.8.2 Example of requirements 4.8.3 Basic principles |
47 | 4.8.4 Response and force limiting |
48 | 4.8.5 Criteria for notching justification 4.8.5.1 Overview 4.8.5.2 Primary notching in sine vibration test |
49 | 4.8.5.3 Secondary notching in sine vibration test 4.8.5.4 Primary notching in random vibration test 4.8.5.5 Secondary notching in random vibration test |
50 | 4.8.5.6 Notching and verification approach (prototype or protoflight) 4.8.5.7 Reporting 4.8.6 Conclusions on notching in sine and random vibration testing |
51 | 4.9 References |
52 | 5 Background on structural dynamics 5.1 Introduction 5.1.1 The dynamic environment |
53 | 5.1.2 Types of structural analysis 5.1.3 List of topics |
54 | 5.1.4 Principal notations 5.1.4.1 Matrix conventions 5.1.4.2 Scalars or matrices |
55 | 5.1.4.3 Subscripts 5.1.4.4 Other notations |
56 | 5.2 Dynamic environments – analysis and specifications 5.2.1 Generalities |
57 | 5.2.2 Example – the maiden flight of Ariane 1 |
59 | 5.2.3 Sine environment 5.2.3.1 Characterisation |
60 | 5.2.3.2 Response of the 1-DOF system |
61 | 5.2.3.3 Influence of the sweep rate |
64 | 5.2.4 Transient environment 5.2.4.1 Characterisation 5.2.4.2 Response of the 1-DOF system 5.2.4.3 Shock response spectra |
67 | 5.2.5 Random environment 5.2.5.1 Random process |
69 | 5.2.5.2 Frequency characterisation |
71 | 5.2.5.3 Response of the 1-DOF system |
73 | 5.2.5.4 Shock response spectra for random environments |
76 | 5.2.6 Sine-equivalent dynamics 5.2.6.1 Introduction 5.2.6.2 Sine-equivalent level |
78 | 5.2.6.3 Influence of damping |
80 | 5.2.6.4 Impact of “non-dynamic” effects on SRS calculation |
85 | 5.2.6.5 Remarks and limitations 5.2.7 Combined environments 5.2.7.1 Introduction |
86 | 5.2.7.2 Combination of X, Y, Z sine loads 5.2.7.3 Combination of sine and random loads 5.2.7.4 Combination of static and dynamic load cases |
88 | 5.3 Dynamic analysis 5.3.1 Frequency domain analysis 5.3.1.1 Frequency response functions 5.3.1.2 Responses from frequency response functions |
89 | 5.3.1.3 Fundamental frequency response functions |
90 | 5.3.2 Modal approach 5.3.2.1 Introduction 5.3.2.2 Modal effective parameters |
93 | 5.3.2.3 Mode superposition |
94 | 5.3.3 Effective mass models 5.3.3.1 Elaboration of effective mass models 5.3.3.2 Use of effective mass models |
95 | 5.3.4 Craig-Bampton models 5.3.4.1 Modal synthesis |
96 | 5.3.4.2 Craig-Bampton reduction |
97 | 5.3.4.3 Mode displacement method 5.3.4.4 Mode acceleration method |
98 | 5.3.4.5 Modal truncation augmentation method |
99 | 5.3.4.6 Interface loads and CoG accelerations |
102 | 5.3.4.7 Damping |
104 | 5.3.4.8 Equivalent damping methods |
106 | 5.3.4.9 Static and dynamic contributions |
107 | 5.3.4.10 Sensitivity Analysis |
108 | 5.3.4.11 Assembly of condensed models |
109 | 5.4 Coupled analysis and notching in sine tests 5.4.1 FRF coupling |
110 | 5.4.2 Modal approach |
111 | 5.4.3 Simple example |
113 | 5.4.4 Use of the shock response spectrum 5.4.4.1 Introduction 5.4.4.2 Methodology |
114 | 5.4.4.3 Simple example |
115 | 5.4.4.4 LV/SC example |
117 | 5.5 Primary and secondary notching 5.5.1 Modes concerned by primary notching 5.5.2 Secondary notching |
118 | 5.5.3 Simple example |
120 | 5.5.4 Conclusions on notching in sine tests 5.6 Random tests 5.6.1 Issues on random tests |
121 | 5.6.2 Mechanical equivalence example |
123 | 5.6.3 Notching in random vibration tests |
126 | 5.7 Practical aspects of modal effective masses |
128 | 5.8 Conclusions 5.9 References |
131 | 6 Launcher / spacecraft coupled loads analysis 6.1 Introduction 6.1.1 General aspects |
132 | 6.1.2 Launch loads and terminology used in the CLA process |
134 | 6.1.3 The role of the CLA within the loads cycle |
135 | 6.2 The phases of the CLA process 6.2.1 Introduction |
136 | 6.2.2 Parameters driving the CLA process 6.2.3 Mathematical model verification and database integration 6.2.4 Finite element model reduction |
137 | 6.2.5 Checks on the Craig-Bampton matrices and OTM 6.2.6 Frequency cut-off for computed modes 6.2.7 Coupling of the launcher and spacecraft models 6.2.8 Calculation of the generalized responses 6.2.9 Determination of the physical responses 6.2.10 Post-processing |
138 | 6.2.11 Uncertainty factors |
139 | 6.3 CLA output and results evaluation 6.3.1 Overview |
140 | 6.3.2 Guidelines to response parameter selection 6.3.3 Equivalent sine input 6.3.4 Computation of static components from OTM |
141 | 6.3.5 Relative displacements 6.3.6 Interface mechanical fluxes and overfluxes 6.3.6.1 Introduction |
142 | 6.3.6.2 Theoretical interface fluxes and overfluxes |
144 | 6.3.6.3 Clamp band tension assessment |
146 | 6.3.6.4 Example of clamp band assessment 6.3.7 Results review, verification and validation |
147 | 6.3.8 Use of CLA results for structural verification 6.3.9 Reporting |
150 | 6.4 Ariane 5 coupled loads analysis 6.4.1 Introduction to Ariane 5 CLA |
151 | 6.4.2 Mission analysis organization and management |
152 | 6.4.3 CLA events and load cases 6.4.3.1 Overview |
154 | 6.4.3.2 Blast waves – Ariane 5 example |
155 | 6.4.3.3 Boosters pressure oscillations – Ariane 5 example |
161 | 6.4.4 Concomitant events and load cases combination |
162 | 6.4.5 Flight phases and CLA standard load cases 6.4.5.1 Introduction 6.4.5.2 SRB ignition – Lift-off |
163 | 6.4.5.3 Transonic 6.4.5.4 Third acoustic mode event |
164 | 6.4.5.5 SRB end of flight |
165 | 6.4.5.6 SRB jettisoning 6.4.6 Aspects of the Ariane 5 CLA methodology |
167 | 6.5 The Arianespace spacecraft qualification process 6.5.1 Introduction |
168 | 6.5.2 Quasi-static loads |
170 | 6.5.3 Dynamic environment 6.5.3.1 Overview of the dynamic environment qualification process |
171 | 6.5.3.2 Spacecraft sine tests |
173 | 6.5.3.3 FCLA predictions versus sine test results |
174 | 6.5.3.4 Examples |
176 | 6.6 Space Shuttle coupled loads analysis 6.6.1 Overview |
177 | 6.6.2 CLA load events |
178 | 6.6.3 Elements of the design and verification process for Space Shuttle payloads 6.6.3.1 Coupled loads analysis and load cycles 6.6.3.2 Cargo Element FEM validation process |
180 | 6.6.3.3 Load combination |
181 | 6.7 References |
182 | 7 Static loads 7.1 Introduction 7.2 Quasi-static loads 7.2.1 General aspects |
183 | 7.2.2 Equivalence between dynamic conditions and CoG net accelerations |
184 | 7.2.3 Quasi-static loads specification |
186 | 7.2.4 Prediction of QSL and mechanical environment by base-drive analysis 7.3 Static test philosophy and objectives |
187 | 7.4 Definition of static test configuration and load cases 7.4.1 Introduction |
188 | 7.4.2 Boundary conditions 7.4.3 Loading systems |
189 | 7.4.4 Load cases |
190 | 7.4.5 Instrumentation 7.5 Static test evaluation |
192 | 7.6 References |
201 | 8 Sine vibration 8.1 Introduction 8.2 Sine vibration levels specification 8.2.1 Sine loads for spacecraft |
202 | 8.2.2 Sine loads for payload and equipment |
203 | 8.3 Simulation / test prediction 8.3.1 Introduction 8.3.2 Boundary conditions |
204 | 8.3.3 Damping 8.3.4 Notch assessment |
205 | 8.4 Sine vibration test 8.4.1 Objectives |
206 | 8.4.2 Notching process |
208 | 8.4.3 Test preparation 8.4.3.1 Introduction |
209 | 8.4.3.2 Test configuration |
210 | 8.4.3.3 Test sequence |
211 | 8.4.3.4 Test success criteria 8.4.3.5 Instrumentation improvement procedures |
213 | 8.4.3.6 Shaker selection |
214 | 8.4.3.7 Test preparation procedures |
221 | 8.4.4 Sine test campaign 8.4.4.1 Pre-test tasks |
222 | 8.4.4.2 Test data assessment |
224 | 8.4.4.3 Transfer functions and test data exploitation |
228 | 8.4.4.4 Higher level prediction |
229 | 8.4.4.5 Run sheet consolidation |
231 | 8.5 References |
232 | 9 Random vibration and vibro-acoustics 9.1 Introduction 9.1.1 Overview |
233 | 9.1.2 Random vibration loads 9.1.3 Vibro-acoustic loads 9.1.3.1 Acoustic loads specification |
235 | 9.1.3.2 Reverberant sound field |
236 | 9.2 Requirements 9.3 Random vibration specification 9.3.1 Introduction 9.3.2 Component vibration environment predictor, Spann method |
238 | 9.3.3 Specifications derived from random and vibro-acoustic test data 9.3.3.1 Introduction |
239 | 9.3.3.2 Unit random testing |
240 | 9.3.4 VibroSpec 9.3.4.1 Introduction |
241 | 9.3.4.2 Database statistics 9.3.4.3 Example |
242 | 9.3.5 Test/analysis extrapolation method 9.3.5.1 Introduction 9.3.5.2 Lift-off phase (reverberant noise): |
243 | 9.3.5.3 Transonic phase (boundary layer noise): 9.3.5.4 Empirical random load factors |
244 | 9.4 Random vibration analysis 9.4.1 Finite element analysis and Miles’ equation |
245 | 9.4.2 Finite element analysis |
247 | 9.4.3 Guidelines for FE random vibration response analysis |
249 | 9.5 Random vibration testing 9.5.1 Introduction 9.5.2 Notching 9.5.2.1 Introduction |
250 | 9.5.2.2 Notching of random test levels based on quasi-static design loads |
256 | 9.5.2.3 Force limiting on ½ octave with quasi-static criterion |
265 | 9.5.2.4 Semi-empirical force limiting specification: “Semi-empirical method” |
266 | 9.6 Vibro-acoustic analysis 9.6.1 Introduction 9.6.2 Boundary element analysis 9.6.2.1 General aspects |
267 | 9.6.2.2 Simulating a diffuse field as a superposition of a finite number of plane waves 9.6.2.3 Why the use of the boundary element method |
268 | 9.6.2.4 Guidelines for vibro-acoustic response analysis by BE |
269 | 9.6.3 Statistical energy analysis 9.6.3.1 General aspects |
271 | 9.6.3.2 Guidelines statistical energy analysis models |
272 | 9.6.4 General guidelines for vibro-acoustic analyses |
274 | 9.7 Acoustic testing 9.7.1 Introduction 9.7.2 Test plan/procedure 9.7.2.1 Introduction |
275 | 9.7.2.2 Test sequence 9.7.2.3 Test run specification 9.7.2.4 Input control 9.7.2.5 Sensor data |
276 | 9.8 Verification of compliance 9.8.1 General aspects |
277 | 9.8.2 An example based on the vibration response spectrum |
280 | 9.9 Special topics in random vibration 9.9.1 Simulation of the random time series |
283 | 9.9.2 Prediction of random acoustic vibration of equipment mounted on panels 9.9.2.1 SEA Analysis satellite equipment panel (NASA Lewis Method) |
286 | 9.9.2.2 Panel wave speed, critical frequency and modal density |
287 | 9.9.2.3 Panel radiation efficiency 9.9.3 Quick way to predict fatigue life (Steinberg method) |
290 | 9.10 References |
293 | 10 Shock 10.1 Introduction 10.2 Shock environment |
294 | 10.3 Shock design and verification process |
295 | 10.3.1 Shock input derivation to subsystems |
296 | 10.3.2 Shock verification approach |
299 | 10.3.3 Shock damage risk assessment |
302 | 10.4 References |
303 | 11 Dimensional stability 11.1 Introduction |
304 | 11.2 Dimensional stability analysis |
305 | 11.2.1 Thermo-elastic distortion analysis 11.2.1.1 Introduction 11.2.1.2 Thermo-elastic model verification |
306 | 11.2.1.3 Specific thermo-elastic modelling aspects |
308 | 11.2.1.4 Temperature mapping process |
310 | 11.2.1.5 Thermo-elastic mathematical model correlation |
312 | 11.2.2 1g-0g transition (gravity release) |
313 | 11.2.3 Moisture absorption / release |
315 | 11.3 Dimensional stability verification 11.3.1 Introduction 11.3.2 Thermal distortion test 11.3.2.1 General |
316 | 11.3.2.2 Test objectives 11.3.2.3 Test setup and performance |
317 | 11.3.2.4 Deformation measurements |
321 | 11.3.2.5 Post-test activities 11.3.3 Gravity release test |
322 | 11.4 Material property characterisation testing 11.4.1 Coefficient of Thermal Expansion (CTE) characterisation |
323 | 11.4.2 Coefficient of Moisture Expansion (CME) characterisation |
324 | 11.5 References |
325 | 12 Fatigue and fracture control 12.1 Introduction |
328 | 12.2 Definitions 12.3 List of events |
332 | 12.4 Load spectra per event 12.4.1 General 12.4.2 Existing load curves |
334 | 12.4.3 Measured load curves |
336 | 12.4.4 Calculating load curves 12.4.4.1 Introduction |
337 | 12.4.4.2 Calculating the response |
338 | 12.4.4.3 Calculating the number of cycles |
339 | 12.5 Generation of fatigue spectra |
341 | 12.6 References |
343 | 13 Micro-gravity and micro-vibrations 13.1 Introduction 13.1.1 Background |
344 | 13.1.2 Scope 13.2 Micro-gravity |
345 | 13.2.1 General aspects 13.2.1.1 Applicability |
347 | 13.2.1.2 Micro-gravity system requirements definition |
351 | 13.2.1.3 Identification of reference configuration and interfaces to micro-gravity payloads |
352 | 13.2.1.4 Micro-gravity environment control activities |
356 | 13.2.2 Derivation of micro-gravity specifications |
357 | 13.2.2.1 Characterisation of the general structural micro-gravity transfer functions |
359 | 13.2.2.2 Characterisation of the general vibro-acoustic transfer functions |
361 | 13.2.2.3 Definition of the micro-gravity environment control budget |
362 | 13.2.2.4 Definition of the micro-gravity force limits at micro-gravity disturbance sources location |
364 | 13.2.3 Micro-gravity environment verification |
365 | 13.2.3.1 System level micro-gravity environment verification |
368 | 13.2.3.2 Equipment level micro-gravity environment verification |
371 | 13.3 Micro-vibration 13.3.1 General aspects |
373 | 13.3.2 Micro-vibration analysis 13.3.2.1 Introduction 13.3.2.2 Finite element model approach |
377 | 13.3.2.3 Model requirements 13.3.2.4 General micro-vibration analysis flow |
378 | 13.3.2.5 Power approach |
379 | 13.3.2.6 Energy approach |
381 | 13.3.3 Micro-vibration budget assessment 13.3.3.1 Introduction |
382 | 13.3.3.2 Summation rules |
383 | 13.3.3.3 Statistical approach |
384 | 13.3.3.4 Envelope approach 13.3.4 Pointing error synthesis |
385 | 13.3.5 Micro-vibration verification test |
386 | 13.3.5.1 Test setup |
387 | 13.3.5.2 Background noise |
388 | 13.3.5.3 Test execution |
389 | 13.3.5.4 Test data acquisition and evaluation 13.4 Micro-gravity and micro-vibration disturbance sources 13.4.1 Scope 13.4.2 Review of potential disturbance sources |
390 | 13.4.2.1 Disturbance source classification |
397 | 13.4.2.2 General aspects of disturbance attenuation and reduction |
400 | 13.4.3 Characterisation of the disturbance sources forcing functions 13.4.3.1 General aspects |
402 | 13.4.3.2 Determination of the disturbance forcing functions by analytical formulation |
425 | 13.4.3.3 Determination of the disturbance forcing functions by test |
437 | 13.5 References |
439 | 14 Soft stowed packaging 14.1 Introduction |
440 | 14.2 Packaging guidelines |
441 | 14.3 Materials for packaging 14.3.1 Physical properties 14.3.1.1 Introduction |
442 | 14.3.1.2 Minicel |
444 | 14.3.1.3 Pyrell |
445 | 14.3.1.4 Zotek |
446 | 14.3.1.5 Plastazote |
447 | 14.3.1.6 Bubble Wrap 14.3.1.7 Foam safety aspects 14.3.2 Attenuation data for foam packed items 14.3.2.1 Introduction |
448 | 14.3.2.2 Accommodation in hard containers |
451 | 14.3.2.3 Accommodation in strapped Cargo Transfer Bags (CTB) |
453 | 14.4 Soft stowed equipment verification flow 14.4.1 Hardware categories and criticality 14.4.2 General verification aspects 14.4.2.1 Introduction |
454 | 14.4.2.2 Strength verification |
458 | 14.4.3 Off-the-shelf (OTS) items and already existing equipment 14.4.3.1 Introduction 14.4.3.2 Strength verification |
459 | 14.4.3.3 Verification of compatibility with dynamic flight environments |
460 | 14.4.4 New equipment / hardware 14.4.4.1 Design of new equipment / hardware 14.4.4.2 Qualification of new equipment / hardware |
465 | 14.2 References |
466 | 15 Nonlinear structures 15.1 Introduction 15.2 Common spacecraft structure nonlinearities |
467 | 15.2.2 Damping |
468 | 15.2.3 Contact |
469 | 15.2.4 Nonlinear stiffness |
470 | 15.3 Nonlinearity detection |
471 | 15.4 Handling of spacecraft structure nonlinearities 15.4.1 Introduction |
472 | 15.4.2 Guidelines for testing 15.4.2.1 Suitable excitation signals |
473 | 15.4.2.2 Vibration control strategy 15.4.2.3 Test instrumentation |
474 | 15.4.2.4 Data sampling and time recording 15.4.3 Nonlinearity characterisation and parameter estimation |
476 | 15.4.4 Guidelines for structure modelling and analysis 15.4.4.1 Understanding the nonlinear model behaviour |
477 | 15.4.4.2 Model condensation 15.4.4.3 Damping assumptions |
479 | 15.4.4.4 Nonlinear stiffness definition |
480 | 15.4.4.5 Influence of gravity effects 15.4.4.6 Nonlinear stiffness parameters 15.4.4.7 Control simulation |
481 | 15.4.5 Impact of nonlinearities on CLA flight load predictions |
483 | 15.5 References |
484 | 16 Finite element models 16.1 Introduction |
485 | 16.2 Requirements for structure mathematical models 16.3 Introduction to V&V in computational mechanics |
488 | 16.4 Spacecraft finite element model complexity and validation test |
489 | 16.5 Uncertainty quantification during load cycles 16.5.1 Overview 16.5.2 Dynamic variability or uncertainty factor Kv 16.5.2.1 Introduction |
490 | 16.5.2.2 Phase B load criteria development and PDR load cycle 16.5.2.3 CDR load cycle 16.5.2.4 Preliminary verification load cycle |
491 | 16.5.2.5 Final verification load cycle 16.5.3 Model factor KM 16.6 Verification and quality assurance for spacecraft finite element analysis |
493 | 16.7 Mathematical model validation 16.7.1 General concepts and terminology |
494 | 16.7.2 Why a mathematical model validation process |
495 | 16.7.3 Categorization of the uncertainty and sources of disagreement between simulation and experimental outcomes 16.7.4 Specific aspects of the validation of spacecraft FEM for coupled loads analysis 16.7.4.1 Introductory aspects |
496 | 16.7.4.2 Phases of the validation process |
498 | 16.7.4.3 Mode shape correlation |
499 | 16.7.4.4 Correlation criteria |
500 | 16.7.5 Error localization and model updating by sensitivity and optimization 16.7.5.1 Parameter estimation |
501 | 16.7.5.2 Modelling errors and selection of the updating parameters 16.7.5.3 Limitations of the “sensitivity and optimisation” approach 16.7.6 Specific aspects concerning base-drive sine vibration testing and “real-time” model validation |
502 | 16.7.7 Stochastic approaches for model validation |
503 | 16.8 References |