Shopping Cart

No products in the cart.

BSI PD CEN ISO/TR 12489:2016

$215.11

Petroleum, petrochemical and natural gas industries. Reliability modelling and calculation of safety systems

Published By Publication Date Number of Pages
BSI 2016 268
Guaranteed Safe Checkout
Categories: ,

If you have any questions, feel free to reach out to our online customer service team by clicking on the bottom right corner. We’re here to assist you 24/7.
Email:[email protected]

This Technical Report aims to close the gap between the state-of-the-art and the application of probabilistic calculations for the safety systems of the petroleum, petrochemical and natural gas industries. It provides guidelines for reliability and safety system analysts and the oil and gas industries to:

  1. understand the correct meaning of the definitions used in the reliability field;

  2. identify

    • the safety systems which may be concerned,

    • the difficulties encountered when dealing with reliability modelling and calculation of safety systems,

    • the relevant probabilistic parameters to be considered;

  3. be informed of effective solutions overcoming the encountered difficulties and allowing to undertake the calculations of relevant probabilistic parameters;

  4. obtain sufficient knowledge of the principles and framework (e.g. the modelling power and limitations) of the well-established approaches currently used in the reliability field:

    • analytical formulae;[1][2][13]

    • Boolean:

      1. reliability block diagrams;[4]

      2. fault trees;[5]

    • sequential: event trees,[8] cause consequence diagrams[10] and LOPA;[9]

    • Markovian;[6]

    • Petri nets;[7]

    • obtain sufficient knowledge of the principles of probabilistic evaluations:

    • analytical calculations (e.g. performed on Boolean or Markovian models);[1][2][3]

    • and Monte Carlo simulation (e.g. performed on Petri nets[7]);

    • select an approach suitable with the complexity of the related safety system and the reliability study which is undertaken;

    • handle safety and dependability (e.g. for production assurance purpose, see 3.1.1) within the same reliability framework.

The elementary approaches (e.g. PHA, HAZID, HAZOP, FMECA) are out of the scope of this Technical Report. Yet they are of utmost importance and ought to be applied first as their results provide the input information essential to properly undertake the implementation of the approaches described in this Technical Report: analytical formulae, Boolean approaches (reliability block diagrams, fault trees, event trees, etc.), Markov graphs and Petri nets.

PDF Catalog

PDF Pages PDF Title
7 Foreword
8 Introduction
9 Section sec_1
1 Scope
10 Section sec_2
Section sec_2.1
Section sec_2.2
2 Analysis framework
2.1 Users of this Technical Report
2.2 ISO/TR 12489 with regard to risk and reliability analysis processes
11 Figure fig_1
12 Section sec_2.3
2.3 Overview of the reliability modelling and calculation approaches considered in this Technical Report
13 Figure fig_2
15 Table tab_1
Section sec_2.4
2.4 Safety systems and safety functions
16 Section sec_3
Section sec_3.1
Section sec_3.1.1
3 Terms and definitions
3.1 Basic reliability concepts
17 Section sec_3.1.2
Section sec_3.1.3
Section sec_3.1.4
Section sec_3.1.5
18 Section sec_3.1.6
Section sec_3.1.7
Section sec_3.1.8
Section sec_3.1.9
Section sec_3.1.10
19 Section sec_3.1.11
Section sec_3.1.12
Section sec_3.1.13
Section sec_3.1.14
20 Section sec_3.1.15
Section sec_3.1.16
Section sec_3.1.17
Section sec_3.1.18
21 Section sec_3.1.19
Section sec_3.1.20
Section sec_3.1.21
22 Section sec_3.1.22
Section sec_3.1.23
Section sec_3.1.24
Section sec_3.1.25
Section sec_3.1.26
Section sec_3.1.27
23 Section sec_3.1.28
Figure fig_3
Section sec_3.1.29
Figure fig_4
24 Section sec_3.1.30
Figure fig_5
Section sec_3.1.31
Section sec_3.1.32
25 Figure fig_6
Section sec_3.1.33
26 Section sec_3.1.34
Section sec_3.1.35
Figure fig_7
27 Section sec_3.1.36
Section sec_3.1.37
Section sec_3.1.38
Section sec_3.1.39
28 Section sec_3.2
Section sec_3.2.1
Section sec_3.2.2
Figure fig_8
3.2 Failure classification
29 Section sec_3.2.3
Section sec_3.2.4
Section sec_3.2.5
Section sec_3.2.6
Section sec_3.2.7
30 Section sec_3.2.8
Section sec_3.2.9
Section sec_3.2.10
Section sec_3.2.11
31 Section sec_3.2.12
Section sec_3.2.13
Section sec_3.2.14
Section sec_3.2.15
Section sec_3.2.16
32 Section sec_3.2.17
Section sec_3.3
Section sec_3.3.1
Section sec_3.3.2
Section sec_3.3.3
3.3 Safety systems typology
33 Section sec_3.4
Section sec_3.4.1
Section sec_3.4.2
Section sec_3.4.3
Section sec_3.4.4
Section sec_3.4.5
Section sec_3.4.6
3.4 Maintenance issues
34 Section sec_3.4.7
Section sec_3.4.8
Section sec_3.4.9
Section sec_3.4.10
35 Figure fig_9
Section sec_3.4.11
Section sec_3.4.12
Section sec_3.4.13
Section sec_3.4.14
36 Section sec_3.4.15
Section sec_3.4.16
Section sec_3.5
Section sec_3.5.1
Section sec_3.5.2
Section sec_3.5.3
Section sec_3.5.4
3.5 Other terms
37 Section sec_3.5.5
Section sec_3.6
Section sec_3.6.1
Section sec_3.6.2
Section sec_3.6.3
Section sec_3.6.4
3.6 Equipment-related terms
38 Section sec_3.6.5
Section sec_3.6.6
Section sec_3.6.7
Section sec_3.6.8
Section sec_4
Table tab_2
4 Symbols and abbreviated terms
39 Table tab_3
41 Section sec_5
Section sec_5.1
5 Overview and challenges
5.1 General considerations about modelling and calculation challenges
43 Section sec_5.2
Section sec_5.3
5.2 Deterministic versus probabilistic approaches
5.3 Safe failure and design philosophy
44 Section sec_5.4
Section sec_5.4.1
Section sec_5.4.2
5.4 Dependent failures
45 Section sec_5.4.3
Section sec_5.5
Section sec_5.5.1
5.5 Human factors
46 Section sec_5.5.2
47 Section sec_5.5.3
Section sec_5.5.4
48 Section sec_5.6
5.6 Documentation of underlying assumptions
49 Section sec_6
Section sec_6.1
6 Introduction to modelling and calculations
6.1 Generalities about safety systems operating in “on demand” or “continuous” modes
50 Figure fig_10
Figure fig_11
Figure fig_12
51 Figure fig_13
Figure fig_14
52 Section sec_6.2
Section sec_6.2.1
Figure fig_15
Figure fig_16
6.2 Analytical approaches
53 Figure fig_17
Figure fig_18
Section sec_6.2.2
54 Section sec_6.2.3
Figure fig_19
55 Section sec_7
Section sec_7.1
Section sec_7.2
7 Analytical formulae approach (low demand mode)
7.1 Introduction
7.2 Underlying hypothesis and main assumptions
56 Section sec_7.3
Section sec_7.3.1
Figure fig_20
7.3 Single failure analysis
57 Section sec_7.3.2
Section sec_7.3.3
58 Section sec_7.3.4
Section sec_7.4
Figure fig_21
7.4 Double failure analysis
59 Section sec_7.4.1
60 Section sec_7.4.2
Section sec_7.4.2.1
Figure fig_22
61 Section sec_7.4.2.2
Figure fig_23
Figure fig_24
62 Section sec_7.4.3
Section sec_7.4.4
Section sec_7.4.5
63 Section sec_7.5
Figure fig_25
Section sec_7.5.1
Figure fig_26
7.5 Triple failure analysis
64 Section sec_7.5.2
Section sec_7.5.3
Section sec_7.6
Figure fig_27
7.6 Common cause failures
65 Section sec_7.7
Section sec_7.8
7.7 Example of implementation of analytical formulae: the PDS method
7.8 Conclusion about analytical formulae approach
66 Section sec_8
Section sec_8.1
Section sec_8.2
8 Boolean and sequential approaches
8.1 Introduction
8.2 Reliability block diagrams (RBD)
67 Figure fig_28
Figure fig_29
Section sec_8.3
8.3 Fault Tree Analysis (FTA)
68 Figure fig_30
69 Section sec_8.4
Section sec_8.5
Section sec_8.5.1
8.4 Sequence modelling: cause consequence diagrams, event tree analysis, LOPA
8.5 Calculations with Boolean models
70 Figure fig_31
Figure fig_32
71 Figure fig_33
Figure fig_34
Section sec_8.5.2
72 Figure fig_35
Section sec_8.6
8.6 Conclusion about the Boolean approach
73 Section sec_9
Section sec_9.1
Figure fig_36
9 Markovian approach
9.1 Introduction and principles
74 Figure fig_37
76 Section sec_9.2
Figure fig_38
9.2 Multiphase Markov models
77 Figure fig_39
Section sec_9.3
Section sec_10
Section sec_10.1
9.3 Conclusion about the Markovian approach
10 Petri net approach
10.1 Basic principle
78 Figure fig_40
79 Section sec_10.2
Figure fig_41
10.2 RBD driven Petri net modelling
80 Figure fig_42
81 Figure fig_43
82 Section sec_10.3
Section sec_11
Section sec_12
10.3 Conclusion about Petri net approach
11 Monte Carlo simulation approach
12 Numerical reliability data uncertainty handling
83 Figure fig_44
Section sec_13
Section sec_13.1
13 Reliability data considerations
13.1 Introduction
84 Section sec_13.2
Table tab_4
13.2 Reliability data sources
86 Section sec_13.3
13.3 Required reliability data
88 Section sec_13.4
Section sec_14
Section sec_14.1
13.4 Reliability data collection
14 Typical applications
14.1 Introduction
89 Table tab_5
90 Section sec_14.2
Section sec_14.2.1
Section sec_14.2.1.1
Figure fig_45
14.2 Typical application TA1: single channel
91 Table tab_6
Section sec_14.2.1.2
92 Section sec_14.2.1.3
Section sec_14.2.1.3.1
Section sec_14.2.1.3.2
Figure fig_46
93 Figure fig_47
Section sec_14.2.1.3.3
Figure fig_48
94 Section sec_14.2.1.3.4
Figure fig_49
Table tab_7
95 Figure fig_50
96 Table tab_8
Figure fig_51
Section sec_14.2.1.4
97 Figure fig_52
98 Section sec_14.2.2
Section sec_14.2.2.1
Table tab_9
Section sec_14.2.2.2
Section sec_14.2.2.2.1
99 Section sec_14.2.2.2.2
Figure fig_53
Figure fig_54
Section sec_14.2.2.2.3
Section sec_14.2.2.2.4
Figure fig_55
100 Section sec_14.2.3
Section sec_14.2.3.1
Section sec_14.2.3.2
Section sec_14.2.3.2.1
Section sec_14.2.3.2.2
101 Figure fig_56
Figure fig_57
Section sec_14.2.3.2.3
Section sec_14.2.3.2.4
102 Figure fig_58
Section sec_14.2.4
Section sec_14.2.4.1
Figure fig_59
Table tab_10
103 Section sec_14.2.4.2
Section sec_14.2.4.2.1
Section sec_14.2.4.2.2
Figure fig_60
104 Section sec_14.2.4.2.3
Figure fig_61
Section sec_14.2.4.2.4
Figure fig_62
105 Section sec_14.3
Section sec_14.3.1
Section sec_14.3.1.1
Figure fig_63
14.3 Typical application TA2: dual channel
106 Table tab_11
Section sec_14.3.1.2
Section sec_14.3.1.3
107 Section sec_14.3.1.3.1
Section sec_14.3.1.3.2
Figure fig_64
Figure fig_65
108 Section sec_14.3.1.3.3
Figure fig_66
Figure fig_67
109 Section sec_14.3.1.3.4
Figure fig_68
Figure fig_69
110 Section sec_14.3.1.4
Figure fig_70
Section sec_14.3.2
Section sec_14.3.2.1
111 Table tab_12
Section sec_14.3.2.2
Section sec_14.3.2.2.1
Figure fig_71
Figure fig_72
113 Section sec_14.3.2.2.2
Figure fig_73
Section sec_14.3.2.2.3
Section sec_14.3.2.2.4
114 Figure fig_74
Section sec_14.3.3
Section sec_14.3.3.1
Section sec_14.3.3.2
Section sec_14.3.3.2.1
115 Section sec_14.3.3.2.2
Figure fig_75
Section sec_14.3.3.2.3
Figure fig_76
116 Figure fig_77
Figure fig_78
Section sec_14.3.3.2.4
Figure fig_79
Figure fig_80
117 Section sec_14.3.4
Section sec_14.3.4.1
Section sec_14.3.4.2
Section sec_14.3.4.2.1
Section sec_14.3.4.2.2
Figure fig_81
118 Section sec_14.3.4.2.3
Section sec_14.4
Section sec_14.4.1
Figure fig_82
14.4 Typical application TA3: popular redundant architecture
119 Section sec_14.4.1.1
Table tab_13
Section sec_14.4.1.2
120 Section sec_14.4.1.3
Section sec_14.4.1.3.1
Figure fig_83
Section sec_14.4.1.3.2
121 Figure fig_84
Section sec_14.4.1.3.3
Section sec_14.4.1.4
122 Section sec_14.4.2
Section sec_14.4.3
Section sec_14.4.3.1
Section sec_14.4.3.2
123 Figure fig_85
Figure fig_86
124 Figure fig_87
Figure fig_88
125 Table tab_14
Section sec_14.4.4
126 Figure fig_89
Table tab_15
127 Section sec_14.5
Section sec_14.5.1
Figure fig_90
14.5 Typical application TA4: multiple safety system
128 Section sec_14.5.2
Section sec_14.5.3
Section sec_14.5.4
Section sec_14.5.4.1
129 Section sec_14.5.4.2
Figure fig_91
Figure fig_92
130 Section sec_14.5.4.3
Figure fig_93
131 Figure fig_94
132 Section sec_14.6
Section sec_14.6.1
Figure fig_95
14.6 Typical application TA5: emergency depressurization system (EDP)
133 Table tab_16
Table tab_17
134 Section sec_14.6.2
Table tab_18
135 Table tab_19
Section sec_14.6.3
136 Figure fig_96
Section sec_14.6.3.1
138 Section sec_14.6.3.2
Figure fig_97
139 Figure fig_98
140 Figure fig_99
Section sec_14.6.3.3
Section sec_14.6.3.4
141 Figure fig_100
142 Figure fig_101
Figure fig_102
143 Section sec_14.7
14.7 Conclusion about typical applications
144 Annex sec_A
Table tab_A.1
Annex A
(informative)

Systems with safety functions

154 Annex sec_B
Annex sec_B.1
Figure fig_B.1
Annex B
(informative)

State analysis and failure classification

156 Figure fig_B.2
Annex sec_B.2
Figure fig_B.3
157 Figure fig_B.4
Annex sec_B.3
158 Figure fig_B.5
Figure fig_B.6
159 Figure fig_B.7
160 Annex sec_C
Figure fig_C.1
Annex C
(informative)

Relationship between failure rate, conditional and unconditional failure intensities and failure frequency

161 Figure fig_C.2
Figure fig_C.3
162 Figure fig_C.4
Figure fig_C.5
163 Figure fig_C.6
164 Figure fig_C.7
Figure fig_C.8
165 Figure fig_C.9
Figure fig_C.10
166 Figure fig_C.11
Figure fig_C.12
168 Annex sec_D
Annex sec_D.1
Figure fig_D.1
Figure fig_D.2
Annex D
(informative)

Broad models for demand mode (reactive) safety systems

169 Figure fig_D.3
170 Figure fig_D.4
171 Figure fig_D.5
172 Figure fig_D.6
173 Annex sec_D.2
Figure fig_D.7
174 Annex sec_D.3
Figure fig_D.8
Figure fig_D.9
175 Annex sec_E
Annex sec_E.1
Figure fig_E.1
Annex E
(informative)

Continuous mode (preventive) safety systems

176 Figure fig_E.2
177 Annex sec_E.2
Figure fig_E.3
178 Annex sec_F
Annex sec_F.1
Figure fig_.1
Annex F
(informative)

Multi-layers safety systems/multiple safety systems

180 Annex sec_F.2
Figure fig_.2
181 Annex sec_G
Annex sec_G.1
Annex sec_G.1.1
Annex sec_G.1.2
Annex sec_G.1.2.1
Annex G
(informative)

Common cause failures

182 Figure fig_G.1
Annex sec_G.1.2.2
183 Table tab_G.1
184 Annex sec_G.2
Figure fig_G.2
186 Annex sec_G.3
Figure fig_G.3
188 Annex sec_H
Annex sec_H.1
Annex sec_H.2
Annex H
(informative)

The human factor

190 Table tab_H.1
Annex sec_H.3
191 Figure fig_H.1
Annex sec_H.4
192 Table tab_H.2
Table tab_H.3
193 Table tab_H.4
Figure fig_H.2
194 Annex sec_I
Annex sec_I.1
Annex sec_I.2
Figure fig_I.1
Annex sec_I.2.1
Annex I
(informative)

Analytical formulae

196 Annex sec_I.2.2
197 Figure fig_I.2
Figure fig_I.3
198 Annex sec_I.2.3
Figure fig_I.4
Annex sec_I.3
199 Figure fig_I.5
Annex sec_I.3.1
Annex sec_I.3.2
Annex sec_I.3.2.1
200 Figure fig_I.6
Annex sec_I.3.2.2
Annex sec_I.3.2.2.1
201 Annex sec_I.3.2.2.2
Annex sec_I.3.2.3
Figure fig_I.7
202 Figure fig_I.8
203 Annex sec_I.3.3
Figure fig_I.9
204 Figure fig_I.10
Annex sec_I.3.4
205 Figure fig_I.11
Figure fig_I.12
206 Annex sec_I.3.5
Annex sec_I.4
Figure fig_I.13
207 Annex sec_I.4.1
Figure fig_I.14
Annex sec_I.4.1.1
208 Annex sec_I.4.1.2
Annex sec_I.4.2
Annex sec_I.4.3
Figure fig_I.15
209 Annex sec_I.5
Annex sec_I.5.1
Annex sec_I.5.2
Annex sec_I.5.2.1
210 Annex sec_I.5.2.2
Annex sec_I.5.3
Annex sec_I.5.3.1
211 Table tab_I.1
Annex sec_I.5.3.2
Table tab_I.2
212 Annex sec_I.5.3.3
214 Table tab_I.3
215 Annex sec_J
Annex J
(informative)

Sequential modelling
Annex J
(informative)

Sequential modelling

216 Figure fig_J.1
217 Figure fig_J.2
Figure fig_J.3
218 Figure fig_J.4
219 Figure fig_J.5
Figure fig_J.6
220 Figure fig_J.7
221 Annex sec_K
Annex sec_K.1
Figure fig_K.1
Annex K
(informative)

Overview of calculations with Boolean models
Annex K
(informative)

Overview of calculations with Boolean models

222 Annex sec_K.2
223 Figure fig_K.2
Figure fig_K.3
Figure fig_K.4
224 Figure fig_K.5
225 Annex sec_K.3
Figure fig_K.6
226 Figure fig_K.7
227 Figure fig_K.8
Annex sec_K.4
228 Figure fig_K.9
229 Annex sec_L
Annex sec_L.1
Figure fig_L.1
Annex L
(informative)

Markovian approach
Annex L
(informative)

Markovian approach

230 Annex sec_L.2
231 Figure fig_L.2
232 Annex sec_L.3
233 Figure fig_L.3
235 Figure fig_L.4
Annex sec_L.4
Figure fig_L.5
236 Annex sec_L.5
Figure fig_L.6
237 Figure fig_L.7
238 Figure fig_L.8
Figure fig_L.9
Figure fig_L.10
239 Figure fig_L.11
Figure fig_L.12
240 Figure fig_L.13
Figure fig_L.14
241 Figure fig_L.15
Annex sec_L.6
242 Figure fig_L.16
Figure fig_L.17
243 Figure fig_L.18
244 Annex sec_L.7
Annex sec_L.7.1
Figure fig_L.19
Annex sec_L.7.2
245 Figure fig_L.20
246 Annex sec_L.8
Figure fig_L.21
247 Annex sec_M
Annex sec_M.1
Figure fig_M.1
Annex M
(informative)

Petri net modelling
Annex M
(informative)

Petri net modelling

248 Annex sec_M.2
249 Figure fig_M.2
Figure fig_M.3
250 Figure fig_M.4
251 Annex sec_M.3
Figure fig_M.5
252 Figure fig_M.6
253 Figure fig_M.7
Annex sec_M.4
254 Figure fig_M.8
Figure fig_M.9
256 Annex sec_N
Figure fig_N.1
Annex N
(informative)

Monte Carlo simulation approach
Annex N
(informative)

Monte Carlo simulation approach

257 Figure fig_N.2
260 Annex sec_O
Figure fig_O.1
Annex O
(informative)

Numerical uncertainties handling
Annex O
(informative)

Numerical uncertainties handling

261 Figure fig_O.2
263 Reference ref_1
Reference ref_2
Reference ref_3
Reference ref_4
Reference ref_5
Reference ref_6
Reference ref_7
Reference ref_8
Reference ref_9
Reference ref_10
Reference ref_11
Reference ref_12
Reference ref_13
Reference ref_14
Reference ref_15
Reference ref_16
Reference ref_17
Reference ref_18
Reference ref_19
Reference ref_20
Reference ref_21
Bibliography
Bibliography
264 Reference ref_22
Reference ref_23
Reference ref_24
Reference ref_25
Reference ref_26
Reference ref_27
Reference ref_28
Reference ref_29
Reference ref_30
Reference ref_31
Reference ref_32
Reference ref_33
Reference ref_34
Reference ref_35
Reference ref_36
Reference ref_37
Reference ref_38
Reference ref_39
Reference ref_40
Reference ref_41
Reference ref_42
Reference ref_43
Reference ref_44
Reference ref_45
265 Reference ref_46
Reference ref_47
Reference ref_48
Reference ref_49
Reference ref_50
Reference ref_51
Reference ref_52
Reference ref_53
Reference ref_54
Reference ref_55
Reference ref_56
Reference ref_57
Reference ref_58
Reference ref_59
Reference ref_60
BSI PD CEN ISO/TR 12489:2016
$215.11