BSI PD CEN/CLC/TR 17603-31-13:2021
$215.11
Space Engineering. Thermal design handbook – Fluid Loops
Published By | Publication Date | Number of Pages |
BSI | 2021 | 490 |
Fluid loops are used to control the temperature of sensitive components in spacecraft systems in order to ensure that they can function correctly.
While there are several methods for thermal control (such as passive thermal insulations, thermoelectric devices, phase change materials, heat pipes and short-term discharge systems), fluid loops have a specific application area.
This Part 13 provides a detailed description of fluid loop systems for use in spacecraft.
The Thermal design handbook is published in 16 Parts
TR 17603-31-01 Thermal design handbook – Part 1: View factors
TR 17603-31-02 Thermal design handbook – Part 2: Holes, Grooves and Cavities
TR 17603-31-03 Thermal design handbook – Part 3: Spacecraft Surface Temperature
TR 17603-31-04 Thermal design handbook – Part 4: Conductive Heat Transfer
TR 17603-31-05 Thermal design handbook – Part 5: Structural Materials: Metallic and Composite
TR 17603-31-06 Thermal design handbook – Part 6: Thermal Control Surfaces
TR 17603-31-07 Thermal design handbook – Part 7: Insulations
TR 17603-31-08 Thermal design handbook – Part 8: Heat Pipes
TR 17603-31-09 Thermal design handbook – Part 9: Radiators
TR 17603-31-10 Thermal design handbook – Part 10: Phase – Change Capacitors
TR 17603-31-11 Thermal design handbook – Part 11: Electrical Heating
TR 17603-31-12 Thermal design handbook – Part 12: Louvers
TR 17603-31-13 Thermal design handbook – Part 13: Fluid Loops
TR 17603-31-14 Thermal design handbook – Part 14: Cryogenic Cooling
TR 17603-31-15 Thermal design handbook – Part 15: Existing Satellites
TR 17603-31-16 Thermal design handbook – Part 16: Thermal Protection System
PDF Catalog
PDF Pages | PDF Title |
---|---|
2 | undefined |
32 | 1 Scope |
33 | 2 References |
34 | 3 Terms, definitions and symbols 3.1 Terms and definitions 3.2 Abbreviated terms |
36 | 3.3 Symbols |
48 | 4 General introduction |
49 | 4.1 Fluid loops |
50 | 4.2 Comparison between fluid loops and alternative systems 4.2.1 Passive thermal insulations 4.2.2 Thermoelectric devices |
51 | 4.2.3 Phase change materials (pcm) |
52 | 4.2.4 Heat pipes 4.2.5 Short-term discharge systems |
54 | 5 Analysis of a fluid loop 5.1 General |
55 | 5.2 Thermal performance |
58 | 5.3 Power requirements |
60 | 6 Thermal analysis 6.1 General 6.2 Analytical background 6.2.1 Heat transfer coefficient |
62 | 6.2.2 Dimensionless groups |
63 | 6.2.3 Simplifying assumptions 6.2.4 Temperature-dependence of fluid properties |
65 | 6.2.5 Laminar versus turbulent fluid flow 6.2.6 Heat transfer to internal flows |
67 | 6.2.7 Heat transfer to external flows |
69 | 6.3 Thermal performance data 6.3.1 Heat transfer to internal flow |
71 | 6.3.1.1 Laminar flow |
77 | 6.3.1.2 Transitional flow |
78 | 6.3.1.3 Turbulent flow |
85 | 6.3.2 Heat transfer to external flows |
86 | 6.3.2.1 Cylindrical bodies |
88 | 6.3.2.2 Tube banks |
94 | 7 Frictional analysis 7.1 General 7.2 Analytical background 7.2.1 Introduction |
95 | 7.2.2 Fully developed flow in straight pipes |
99 | 7.2.2.1 Power-law approximations for the hydraulically smooth regime 7.2.3 Temperature-dependence of fluid properties |
100 | 7.2.4 Several definitions of pressure loss coefficient |
102 | 7.2.5 Entrance effects |
103 | 7.2.6 Interferences and networks |
104 | 7.2.7 Flow chart |
107 | 7.3 Pressure loss data 7.3.1 Straight pipes |
108 | 7.3.2 Bends |
115 | 7.3.3 Sudden changes of area |
118 | 7.3.4 Orifices and diaphragms |
121 | 7.3.5 Screens |
122 | 7.3.6 Valves |
123 | 7.3.7 Tube banks |
126 | 7.3.8 Branching of tubes |
127 | 8 Combined thermal and frictional analysis 8.1 General 8.2 Analogies between momentum and heat transfer 8.2.1 The Reynolds analogy |
130 | 8.2.2 The Prandtl analogy |
131 | 8.2.3 The Von Karman analogy 8.2.4 Other analogies |
132 | 9 Heat transfer enhancement 9.1 General |
133 | 9.1.1 Basic augmentation mechanisms |
134 | 9.1.2 Criterion for the evaluation of the several techniques |
135 | 9.1.3 Index of the compiled data. 9.1.4 Validity of the empirical correlations |
138 | 9.2 Single-phase forced convection data |
172 | 10 Working fluids 10.1 General 10.2 Cooling effectiveness of a fluid |
174 | 10.2.1 Simplified fluid loop configuration 10.2.2 Thermal performance of the simplified loop |
175 | 10.2.3 Power requirements of the simplified loop 10.2.4 Several examples |
180 | 10.3 Properties of liquid coolants |
214 | 10.4 Properties of dry air |
216 | 11 Heat exchangers 11.1 General |
219 | 11.2 Basic analysis 11.2.1 Introduction |
220 | 11.2.2 Analytical background |
223 | 11.2.3 Exchanger performance |
238 | 11.3 Exchanging surface geometries |
239 | 11.3.1 Tubular surfaces |
242 | 11.3.2 Plate-fin surfaces |
248 | 11.3.3 Finned tubes |
250 | 11.3.4 Matrix surfaces |
251 | 11.4 Deviations from basic analysis 11.4.1 Introduction |
252 | 11.4.2 Longitudinal heat conduction |
255 | 11.4.3 Flow maldistribution 11.4.3.1 Simple analyses |
260 | 11.4.3.2 Maldistribution compensating techniques in shell-and-tube heat exchangers |
264 | 11.4.3.3 Maldistribution compensating techniques in parallel counterflow heat exchangers |
265 | 11.5 Manufacturing defects 11.5.1 Introduction 11.5.2 Variations of the flow passages |
269 | 11.5.3 Fin leading edge imperfections 11.5.4 Brazing |
273 | 11.6 In service degradation 11.6.1 Introduction 11.6.2 Fouling |
276 | 11.7 Existing systems |
285 | 12 Pumps 12.1 General |
289 | 12.2 Specified speed |
291 | 12.3 Net suction energy |
292 | 12.4 Requirements for spaceborne pumps |
293 | 12.5 Commercially available pumps |
299 | 12.6 European pump manufacturers |
300 | 13 System optimization 13.1 General 13.2 Basic analysis |
301 | 13.2.1 Interface heat exchanger |
302 | 13.2.2 Supply and return plumbing |
303 | 13.2.3 Radiator 13.3 Special examples |
304 | 13.3.1 Constraints based on source temperature |
307 | 13.3.2 Constraints imposed by the integration |
311 | 14 Two-phase flow 14.1 General |
313 | 14.2 Pressure loss 14.2.1 Lockhart-martinelli correlation |
318 | 14.2.2 Improvements upon martinelli correlation |
319 | 14.3 Annular flow |
320 | 14.3.1 Ideal annular flow model 14.3.1.1 Mass preservation equation for either phase 14.3.1.2 Axial momentum equation for either phase |
321 | 14.3.1.3 Pressure loss vs. friction factors fl and fgi |
322 | 14.3.1.4 Laws of friction for fl and fgi |
324 | 14.3.1.5 Expressions in terms of martinelli parameters |
326 | 14.3.1.6 Summary |
328 | 14.3.1.7 Worked example |
329 | 14.3.2 Annular flow with entrainment model 14.3.2.1 Mass preservation equation for either phase |
330 | 14.3.2.2 Axial momentum equation for either phase 14.3.2.3 Pressure loss vs. friction factors ffand fgi |
331 | 14.3.2.4 Laws of friction for ff and fgi* |
332 | 14.3.2.5 Expressions in terms of martinelli parameters |
334 | 14.3.2.6 Additional data on entrainment |
335 | 14.3.2.7 Summary |
337 | 14.3.2.8 Worked example |
341 | 14.3.2.9 The ideal annular and the annular with entrainment models |
343 | 14.4 Condensation in ducts 14.4.1 Condensing flow model |
345 | 14.4.1.2 Static pressure loss |
346 | 14.4.1.3 Friction terms |
347 | 14.4.1.4 Momentum equation |
348 | 14.4.1.5 Dimensionless energy equation |
349 | 14.4.2 Variation of the vapor quality along the duct in the stratified model |
351 | 14.4.3 Limits of validity of the stratified model |
352 | 14.4.4 Annular flow model |
353 | 14.4.4.1 Heat transfer coefficient in annular flow |
356 | 14.4.5 Variation of the vapor quality along the duct in the annular model |
359 | 15 Two-phase thermal transport systems 15.1 General 15.1.1 Evolution of thermal transport systems |
360 | 15.1.2 Two-phase loop general layout |
363 | 15.1.3 About the nomenclature of this clause 15.2 Tms trade-off study |
366 | 15.2.1 TMS study baseline 15.2.2 TMS design concepts |
369 | 15.2.3 Evaluation of tms concepts |
372 | 15.3 Design for orbital average load 15.3.1 Phase change capacitor performance |
378 | 15.4 Off-design operation |
380 | 15.4.1 Temperature control 15.4.1.1 Pumped liquid loop system |
382 | 15.4.1.2 Two-phase transport system |
383 | 15.4.2 Instrumentation requirements |
384 | 15.5 Radiator-loop interaction |
385 | 15.5.1 Boosting radiator temperature with a heat pump |
390 | 15.5.2 Thermal-storage assisted radiator |
392 | 15.5.2.1 Coating degradation and radiator life |
393 | 15.5.3 Steerable radiators |
395 | 15.5.3.1 Rotary thermal couplings |
402 | 15.5.3.2 Rotatable fluid transfer coupling |
404 | 15.5.4 Radiators coupling |
406 | 15.6 Capillary pumped loop (cpl) technology |
410 | 15.6.1 Advantages of cpl systems 15.6.2 CPL performance constraints 15.6.3 CPL basic system concept |
411 | 15.6.3.1 Heat acquisition |
412 | 15.6.3.2 Heat transport 15.6.3.3 Heat rejection |
413 | 15.6.3.4 Controls 15.7 Components 15.7.1 Pumping systems 15.7.1.1 Monogroove heat pipe |
414 | 15.7.1.2 Capillary pump 15.7.1.3 Vapour compressor 15.7.1.4 Mechanical pump 15.7.1.5 Osmotic pump |
415 | 15.7.1.6 Biomorph pump |
416 | 15.7.2 Mounting plates |
418 | 15.7.3 Vapour quality sensors |
419 | 15.7.3.2 Capacitance methods |
422 | 15.7.4 Fluid disconnects |
424 | 16 Control technology 16.1 Basic definitions |
425 | 16.2 General description of control systems 16.2.1 Introduction |
426 | 16.2.2 Closed-loop control systems 16.2.3 Open-loop control system |
427 | 16.2.4 Adaptative control systems |
428 | 16.2.5 Learning control system 16.2.6 Trade-off of open- and closed-loop control systems |
429 | 16.2.6.1 Effect of feedback on overall gain 16.2.6.2 Effect of feedback on stability |
430 | 16.2.6.3 Effect of feedback on sensitivity |
431 | 16.2.6.4 Effect of feedback on external disturbance or noise |
433 | 16.3 Basic control actions 16.3.1 Introduction |
434 | 16.3.2 Two-position or on-off control action |
435 | 16.3.3 Proportional control action (p controller) |
436 | 16.3.4 Integral control action (i controller). |
437 | 16.3.5 Proportional-integral control action (pi controller) |
438 | 16.3.6 Proportional-derivative control action (pd controller) |
439 | 16.3.7 Proportional-integral-derivative control action (pid controller) |
440 | 16.3.8 Summary |
441 | 16.4 Implementation techniques of control laws 16.4.1 Introduction 16.4.1.1 Digital control systems |
443 | 16.4.1.2 Analog controllers 16.4.2 Devices characterization 16.4.2.1 Pressure systems |
444 | 16.4.2.2 Valves |
445 | 16.4.2.3 Dashpots |
447 | 16.4.3 Analog-controller implementation techniques |
448 | 16.4.3.1 Proportional control actions |
450 | 16.4.3.2 Proportional-derivative control actions |
453 | 16.4.3.3 Integral control actions |
454 | 16.4.3.4 Proportional-integral control actions |
457 | 16.4.3.5 Proportional-integral-derivative control actions |
458 | 16.4.4 Summary |
460 | 16.5 Hardware description 16.5.1 Introduction |
462 | 16.5.2 Controllers 16.5.2.1 Digital/analog controllers trade/off |
464 | 16.5.2.2 Digital controllers |
467 | 16.5.3 Sensors 16.5.3.1 Effects of the sensor on system performance |
468 | 16.5.3.2 Temperature sensors |
469 | 16.5.3.3 Pressure sensor 16.5.3.4 Flow sensors |
470 | 16.5.4 Actuators. Control valves |
471 | 16.6 Control software |
474 | 16.7 Existing systems 16.7.1 Space radiator system 16.7.1.1 General description |