Shopping Cart

No products in the cart.

BSI PD CEN/CLC/TR 17603-31-13:2021

$215.11

Space Engineering. Thermal design handbook – Fluid Loops

Published By Publication Date Number of Pages
BSI 2021 490
Guaranteed Safe Checkout
Category:

If you have any questions, feel free to reach out to our online customer service team by clicking on the bottom right corner. We’re here to assist you 24/7.
Email:[email protected]

Fluid loops are used to control the temperature of sensitive components in spacecraft systems in order to ensure that they can function correctly.

While there are several methods for thermal control (such as passive thermal insulations, thermoelectric devices, phase change materials, heat pipes and short-term discharge systems), fluid loops have a specific application area.

This Part 13 provides a detailed description of fluid loop systems for use in spacecraft.

The Thermal design handbook is published in 16 Parts

TR 17603-31-01 Thermal design handbook – Part 1: View factors

TR 17603-31-02 Thermal design handbook – Part 2: Holes, Grooves and Cavities

TR 17603-31-03 Thermal design handbook – Part 3: Spacecraft Surface Temperature

TR 17603-31-04 Thermal design handbook – Part 4: Conductive Heat Transfer

TR 17603-31-05 Thermal design handbook – Part 5: Structural Materials: Metallic and Composite

TR 17603-31-06 Thermal design handbook – Part 6: Thermal Control Surfaces

TR 17603-31-07 Thermal design handbook – Part 7: Insulations

TR 17603-31-08 Thermal design handbook – Part 8: Heat Pipes

TR 17603-31-09 Thermal design handbook – Part 9: Radiators

TR 17603-31-10 Thermal design handbook – Part 10: Phase – Change Capacitors

TR 17603-31-11 Thermal design handbook – Part 11: Electrical Heating

TR 17603-31-12 Thermal design handbook – Part 12: Louvers

TR 17603-31-13 Thermal design handbook – Part 13: Fluid Loops

TR 17603-31-14 Thermal design handbook – Part 14: Cryogenic Cooling

TR 17603-31-15 Thermal design handbook – Part 15: Existing Satellites

TR 17603-31-16 Thermal design handbook – Part 16: Thermal Protection System

PDF Catalog

PDF Pages PDF Title
2 undefined
32 1 Scope
33 2 References
34 3 Terms, definitions and symbols
3.1 Terms and definitions
3.2 Abbreviated terms
36 3.3 Symbols
48 4 General introduction
49 4.1 Fluid loops
50 4.2 Comparison between fluid loops and alternative systems
4.2.1 Passive thermal insulations
4.2.2 Thermoelectric devices
51 4.2.3 Phase change materials (pcm)
52 4.2.4 Heat pipes
4.2.5 Short-term discharge systems
54 5 Analysis of a fluid loop
5.1 General
55 5.2 Thermal performance
58 5.3 Power requirements
60 6 Thermal analysis
6.1 General
6.2 Analytical background
6.2.1 Heat transfer coefficient
62 6.2.2 Dimensionless groups
63 6.2.3 Simplifying assumptions
6.2.4 Temperature-dependence of fluid properties
65 6.2.5 Laminar versus turbulent fluid flow
6.2.6 Heat transfer to internal flows
67 6.2.7 Heat transfer to external flows
69 6.3 Thermal performance data
6.3.1 Heat transfer to internal flow
71 6.3.1.1 Laminar flow
77 6.3.1.2 Transitional flow
78 6.3.1.3 Turbulent flow
85 6.3.2 Heat transfer to external flows
86 6.3.2.1 Cylindrical bodies
88 6.3.2.2 Tube banks
94 7 Frictional analysis
7.1 General
7.2 Analytical background
7.2.1 Introduction
95 7.2.2 Fully developed flow in straight pipes
99 7.2.2.1 Power-law approximations for the hydraulically smooth regime
7.2.3 Temperature-dependence of fluid properties
100 7.2.4 Several definitions of pressure loss coefficient
102 7.2.5 Entrance effects
103 7.2.6 Interferences and networks
104 7.2.7 Flow chart
107 7.3 Pressure loss data
7.3.1 Straight pipes
108 7.3.2 Bends
115 7.3.3 Sudden changes of area
118 7.3.4 Orifices and diaphragms
121 7.3.5 Screens
122 7.3.6 Valves
123 7.3.7 Tube banks
126 7.3.8 Branching of tubes
127 8 Combined thermal and frictional analysis
8.1 General
8.2 Analogies between momentum and heat transfer
8.2.1 The Reynolds analogy
130 8.2.2 The Prandtl analogy
131 8.2.3 The Von Karman analogy
8.2.4 Other analogies
132 9 Heat transfer enhancement
9.1 General
133 9.1.1 Basic augmentation mechanisms
134 9.1.2 Criterion for the evaluation of the several techniques
135 9.1.3 Index of the compiled data.
9.1.4 Validity of the empirical correlations
138 9.2 Single-phase forced convection data
172 10 Working fluids
10.1 General
10.2 Cooling effectiveness of a fluid
174 10.2.1 Simplified fluid loop configuration
10.2.2 Thermal performance of the simplified loop
175 10.2.3 Power requirements of the simplified loop
10.2.4 Several examples
180 10.3 Properties of liquid coolants
214 10.4 Properties of dry air
216 11 Heat exchangers
11.1 General
219 11.2 Basic analysis
11.2.1 Introduction
220 11.2.2 Analytical background
223 11.2.3 Exchanger performance
238 11.3 Exchanging surface geometries
239 11.3.1 Tubular surfaces
242 11.3.2 Plate-fin surfaces
248 11.3.3 Finned tubes
250 11.3.4 Matrix surfaces
251 11.4 Deviations from basic analysis
11.4.1 Introduction
252 11.4.2 Longitudinal heat conduction
255 11.4.3 Flow maldistribution
11.4.3.1 Simple analyses
260 11.4.3.2 Maldistribution compensating techniques in shell-and-tube heat exchangers
264 11.4.3.3 Maldistribution compensating techniques in parallel counterflow heat exchangers
265 11.5 Manufacturing defects
11.5.1 Introduction
11.5.2 Variations of the flow passages
269 11.5.3 Fin leading edge imperfections
11.5.4 Brazing
273 11.6 In service degradation
11.6.1 Introduction
11.6.2 Fouling
276 11.7 Existing systems
285 12 Pumps
12.1 General
289 12.2 Specified speed
291 12.3 Net suction energy
292 12.4 Requirements for spaceborne pumps
293 12.5 Commercially available pumps
299 12.6 European pump manufacturers
300 13 System optimization
13.1 General
13.2 Basic analysis
301 13.2.1 Interface heat exchanger
302 13.2.2 Supply and return plumbing
303 13.2.3 Radiator
13.3 Special examples
304 13.3.1 Constraints based on source temperature
307 13.3.2 Constraints imposed by the integration
311 14 Two-phase flow
14.1 General
313 14.2 Pressure loss
14.2.1 Lockhart-martinelli correlation
318 14.2.2 Improvements upon martinelli correlation
319 14.3 Annular flow
320 14.3.1 Ideal annular flow model
14.3.1.1 Mass preservation equation for either phase
14.3.1.2 Axial momentum equation for either phase
321 14.3.1.3 Pressure loss vs. friction factors fl and fgi
322 14.3.1.4 Laws of friction for fl and fgi
324 14.3.1.5 Expressions in terms of martinelli parameters
326 14.3.1.6 Summary
328 14.3.1.7 Worked example
329 14.3.2 Annular flow with entrainment model
14.3.2.1 Mass preservation equation for either phase
330 14.3.2.2 Axial momentum equation for either phase
14.3.2.3 Pressure loss vs. friction factors ffand fgi
331 14.3.2.4 Laws of friction for ff and fgi*
332 14.3.2.5 Expressions in terms of martinelli parameters
334 14.3.2.6 Additional data on entrainment
335 14.3.2.7 Summary
337 14.3.2.8 Worked example
341 14.3.2.9 The ideal annular and the annular with entrainment models
343 14.4 Condensation in ducts
14.4.1 Condensing flow model
345 14.4.1.2 Static pressure loss
346 14.4.1.3 Friction terms
347 14.4.1.4 Momentum equation
348 14.4.1.5 Dimensionless energy equation
349 14.4.2 Variation of the vapor quality along the duct in the stratified model
351 14.4.3 Limits of validity of the stratified model
352 14.4.4 Annular flow model
353 14.4.4.1 Heat transfer coefficient in annular flow
356 14.4.5 Variation of the vapor quality along the duct in the annular model
359 15 Two-phase thermal transport systems
15.1 General
15.1.1 Evolution of thermal transport systems
360 15.1.2 Two-phase loop general layout
363 15.1.3 About the nomenclature of this clause
15.2 Tms trade-off study
366 15.2.1 TMS study baseline
15.2.2 TMS design concepts
369 15.2.3 Evaluation of tms concepts
372 15.3 Design for orbital average load
15.3.1 Phase change capacitor performance
378 15.4 Off-design operation
380 15.4.1 Temperature control
15.4.1.1 Pumped liquid loop system
382 15.4.1.2 Two-phase transport system
383 15.4.2 Instrumentation requirements
384 15.5 Radiator-loop interaction
385 15.5.1 Boosting radiator temperature with a heat pump
390 15.5.2 Thermal-storage assisted radiator
392 15.5.2.1 Coating degradation and radiator life
393 15.5.3 Steerable radiators
395 15.5.3.1 Rotary thermal couplings
402 15.5.3.2 Rotatable fluid transfer coupling
404 15.5.4 Radiators coupling
406 15.6 Capillary pumped loop (cpl) technology
410 15.6.1 Advantages of cpl systems
15.6.2 CPL performance constraints
15.6.3 CPL basic system concept
411 15.6.3.1 Heat acquisition
412 15.6.3.2 Heat transport
15.6.3.3 Heat rejection
413 15.6.3.4 Controls
15.7 Components
15.7.1 Pumping systems
15.7.1.1 Monogroove heat pipe
414 15.7.1.2 Capillary pump
15.7.1.3 Vapour compressor
15.7.1.4 Mechanical pump
15.7.1.5 Osmotic pump
415 15.7.1.6 Biomorph pump
416 15.7.2 Mounting plates
418 15.7.3 Vapour quality sensors
419 15.7.3.2 Capacitance methods
422 15.7.4 Fluid disconnects
424 16 Control technology
16.1 Basic definitions
425 16.2 General description of control systems
16.2.1 Introduction
426 16.2.2 Closed-loop control systems
16.2.3 Open-loop control system
427 16.2.4 Adaptative control systems
428 16.2.5 Learning control system
16.2.6 Trade-off of open- and closed-loop control systems
429 16.2.6.1 Effect of feedback on overall gain
16.2.6.2 Effect of feedback on stability
430 16.2.6.3 Effect of feedback on sensitivity
431 16.2.6.4 Effect of feedback on external disturbance or noise
433 16.3 Basic control actions
16.3.1 Introduction
434 16.3.2 Two-position or on-off control action
435 16.3.3 Proportional control action (p controller)
436 16.3.4 Integral control action (i controller).
437 16.3.5 Proportional-integral control action (pi controller)
438 16.3.6 Proportional-derivative control action (pd controller)
439 16.3.7 Proportional-integral-derivative control action (pid controller)
440 16.3.8 Summary
441 16.4 Implementation techniques of control laws
16.4.1 Introduction
16.4.1.1 Digital control systems
443 16.4.1.2 Analog controllers
16.4.2 Devices characterization
16.4.2.1 Pressure systems
444 16.4.2.2 Valves
445 16.4.2.3 Dashpots
447 16.4.3 Analog-controller implementation techniques
448 16.4.3.1 Proportional control actions
450 16.4.3.2 Proportional-derivative control actions
453 16.4.3.3 Integral control actions
454 16.4.3.4 Proportional-integral control actions
457 16.4.3.5 Proportional-integral-derivative control actions
458 16.4.4 Summary
460 16.5 Hardware description
16.5.1 Introduction
462 16.5.2 Controllers
16.5.2.1 Digital/analog controllers trade/off
464 16.5.2.2 Digital controllers
467 16.5.3 Sensors
16.5.3.1 Effects of the sensor on system performance
468 16.5.3.2 Temperature sensors
469 16.5.3.3 Pressure sensor
16.5.3.4 Flow sensors
470 16.5.4 Actuators. Control valves
471 16.6 Control software
474 16.7 Existing systems
16.7.1 Space radiator system
16.7.1.1 General description
BSI PD CEN/CLC/TR 17603-31-13:2021
$215.11