Shopping Cart

No products in the cart.

BSI PD CEN/CLC/TR 17603-20-05:2021

$215.11

Space engineering. High voltage engineering and design handbook

Published By Publication Date Number of Pages
BSI 2021 222
Guaranteed Safe Checkout
Category:

If you have any questions, feel free to reach out to our online customer service team by clicking on the bottom right corner. We’re here to assist you 24/7.
Email:[email protected]

This Handbook establishes guidelines to ensure a reliable design, manufacturing and testing of high voltage electronic equipment and covers:

  • Design

  • Manufacturing

  • Verification/Testing

of equipment generating, carrying or consuming high voltage, like: high voltage power conditioner, high voltage distribution (cables and connectors).

This Handbook is dedicated to all parties involved at all levels in the realization of space segment hardware and its interface with high voltage for which ECSS-E-ST-20C is applicable.

This handbook sets out to:

  • summarize most relevant aspects and data of high voltage insulation

  • provide design guidelines for high voltage insulation

  • provide design guidelines for high voltage electronic equipment

  • give an overview of appropriate high voltage test methods

  • establish a set of recommendations for generation design and verification rules and methods

  • provide best practices

Applicability is mainly focused on power conditioning equipment but may be also applicable for all other high voltage electric and electronic power equipment used on space missions, except items of experimental nature.

PDF Catalog

PDF Pages PDF Title
2 undefined
14 1 Scope
15 2 References
19 3 Terms, definitions and abbreviated terms
25 4 High voltage design considerations
4.1.1 Impact of environment
4.1.2 Pressure
27 4.1.3 Temperature
28 4.1.4 Energetic Particle Radiation
29 4.1.5 Space Debris and Micrometeoroids
4.1.6 Plasma
30 4.1.7 Mechanical
4.2.1 Categories of insulation
4.2.2 Gaseous insulation
33 4.2.3 Liquid insulation
34 4.2.4 Solid insulation
37 4.2.5 Vacuum insulation
38 4.2.6 Composites
4.3.1 Perspective
39 4.3.2 Electrical breakdown
4.3.2.1 Breakdown parameters
4.3.2.2 Breakdown mechanisms of gaseous insulation
41 4.3.2.3 Breakdown mechanisms of liquid insulation
42 4.3.2.4 Breakdown mechanisms of solid insulation
43 4.3.2.5 Breakdown mechanisms of vacuum insulation
45 4.3.3 Partial discharges
48 4.3.4 Paschen breakdown
50 4.3.5 Ageing
4.3.5.1 Ageing of gaseous, liquid and vacuum insulation
51 4.3.5.2 Ageing of solid insulation
56 4.4.1 DC-DC High voltage power conditioners
58 4.4.2 Electronic power conditioners for TWTA
4.4.2.1 Electrical power conditioner for TWTA overview
59 4.4.2.2 EPC design
60 4.4.2.3 EPC high voltage generation
63 4.4.2.4 High Voltage Isolation Design of a Transformer
65 4.4.3 Electric propulsion
4.4.3.1 Electric propulsion overview
67 4.4.3.2 FEEP thrusters
68 4.4.3.3 Plasma thrusters (Hall effect type)
69 4.4.3.4 Plasma thrusters (HEMP type)
70 4.4.3.5 Ion engines (Kaufmann type)
71 4.4.3.6 Ion Engines (Radio-frequency type)
72 4.4.4 Microwave tubes
75 4.4.5 Scientific instruments and experiments
77 5 High voltage design principles
5.1.1 Control of voltage
78 5.1.2 Control of electrical field strengths
5.1.2.1 Electrical Field Strengths Classifications
80 5.1.2.2 General control means for electrical field strength
5.1.2.3 Impact of voltage
81 5.1.2.4 Impact of geometry
5.1.2.5 Geometry reference case: parallel planes
5.1.2.6 Geometry reference case: spheres
84 5.1.2.7 Geometry reference case: cylinders
85 5.1.2.8 Space charges
88 5.1.2.9 Calculation Methods
89 5.1.3 Control of electrical field distribution
91 5.1.4 Control of insulation properties
94 5.1.5 Control of surface properties
95 5.1.6 Control of partial discharges
97 5.1.7 Control of corona effects
5.1.8 Control of Paschen breakdown
100 5.1.9 Control of triple junction effects
101 5.1.10 Control of creepage path
102 5.1.11 Control of surface charging
104 5.1.12 Control of interferences
107 5.2.1 Solid insulation: potted modules
5.2.1.1 General
5.2.1.2 Materials
111 5.2.1.3 Design
122 5.2.1.4 Potting Process
125 5.2.1.5 Life Limiting Factors
5.2.1.6 Thermal management
126 5.2.1.7 Thermo-mechanical matching
5.2.1.8 Other aspects
5.2.1.9 Long-term stability
5.2.1.10 Reparability
127 5.2.1.11 References of potted insulations
5.2.1.12 Costs
5.2.1.13 Recommendation for use
5.2.2 Solid insulation: others
5.2.2.1 General
129 5.2.3 Gaseous insulation
5.2.3.1 General
131 5.2.3.2 Nitrogen (N2)
5.2.3.3 Sulphur Hexafluoride (SF6)
132 5.2.3.4 Construction elements
5.2.3.5 Long-term stability
5.2.3.6 Reparability
5.2.3.7 Mass/Size
133 5.2.3.8 References of Gaseous Insulations
5.2.3.9 Costs
5.2.3.10 Recommendation for use
134 5.2.4 Liquid insulation (Oil)
5.2.4.1 General
5.2.4.2 Long-term stability
5.2.4.3 Reparability
135 5.2.4.4 References of Liquid Insulations
5.2.4.5 Costs
5.2.4.6 Recommendation for use
5.2.5 Space vacuum insulation
5.2.5.1 General
136 5.2.5.2 Insulator surfaces
140 5.2.5.3 Conditioning effects
5.2.5.4 Cleaning and preparation
141 5.2.5.5 Leakage currents and triple-junction effect
5.2.5.6 Control of pressure
5.2.5.7 On ground testing
5.2.5.8 Long-term stability
142 5.2.5.9 Reparability
5.2.5.10 References of vacuum insulations
5.2.5.11 Costs
5.2.5.12 Recommendation for use
143 5.3.1 Transformers and inductors
146 5.3.2 Capacitors
149 5.3.3 Resistors
151 5.3.4 Semiconductors
5.3.5 Wires and cables
156 5.3.6 Connectors
157 5.3.7 Interconnections
159 5.3.8 Insulators and spacers
160 5.3.9 Feedthroughs
161 5.3.10 Printed circuit boards
163 5.3.11 Other components
164 6 High voltage testing
6.1.1 Insulation Resistance Test (INR)
6.1.1.1 Applicability
6.1.1.2 Objectives
6.1.1.3 Rationale
6.1.1.4 Method
6.1.1.5 Acceptance Criteria
165 6.1.2 Bulk Resistance Measurement (BRM)
6.1.2.1 Applicability
6.1.2.2 Objectives
6.1.2.3 Rationale
6.1.2.4 Method
6.1.2.5 Acceptance Criteria
166 6.1.3 Surface Resistance Measurement (SRM)
6.1.3.1 Applicability
6.1.3.2 Objectives
6.1.3.3 Rationale
6.1.3.4 Method
6.1.3.5 Acceptance Criteria
167 6.1.4 Polarisation and Depolarisation Current Measurement (PDC)
6.1.4.1 Applicability
6.1.4.2 Objectives
6.1.4.3 Rationale
6.1.4.4 Method
6.1.4.5 Acceptance Criteria
168 6.1.5 Dielectric Loss Factor Test (DLF)
6.1.5.1 Applicability
6.1.5.2 Objectives
6.1.5.3 Rationale
6.1.5.4 Method
6.1.5.5 Acceptance Criteria
169 6.1.6 Partial Discharge Test (PDT)
6.1.6.1 Objective
6.1.6.2 Rationale
6.1.6.3 Method and Acceptance Criteria
170 6.1.6.4 Aspects of implementation and test environment
175 6.1.7 Dielectric Withstanding Voltage Test (DWV)
6.1.7.1 Objective
6.1.7.2 Rationale
6.1.7.3 Method
176 6.1.7.4 Acceptance Criteria
177 6.1.8 Triple Junction Test (TRJ)
6.1.8.1 Applicability
6.1.8.2 Objective
6.1.8.3 Rationale
6.1.8.4 Method
178 6.1.8.5 Acceptance Criteria
179 6.1.9 Critical pressure testing/Corona testing (CPT)
6.1.9.1 Objective
6.1.9.2 Rationale
6.1.9.3 Method
181 6.1.9.4 Acceptance Criteria
182 6.1.10 Life testing (LIT)
6.1.10.1 Objective
6.1.10.2 Rationale
6.1.10.3 Method
6.1.10.4 Acceptance Criteria
183 6.1.11 Accelerated life testing (ALT)
6.1.11.1 Objective
6.1.11.2 Rationale
6.1.11.3 Method
6.1.11.4 Acceptance Criteria
184 6.1.12 Burn-in testing (BIT)
6.1.12.1 Objective
6.1.12.2 Rationale
6.1.12.3 Method
6.1.12.4 Acceptance Criteria
185 6.2.1 Breakdown Voltage Test (BVT)
6.2.1.1 Objective
6.2.1.2 Rationale
6.2.1.3 Method
186 6.2.1.4 Acceptance Criteria
6.2.2 Lifetime evaluation testing (LET)
6.2.2.1 Objective
6.2.2.2 Rationale
6.2.2.3 Method
6.2.2.4 Acceptance Criteria
191 7 High voltage product aspects
7.1.1 Best practice for materials and processes selection
193 7.1.2 Best practice for design
195 7.1.3 Best practice for qualification
196 7.1.4 Best practice for flight acceptance
197 7.1.5 Best practice for verification
198 7.1.6 PID
199 7.1.7 Evaluation Plan
200 8 Specific problem areas
8.1.1 High voltage converters
202 8.1.2 Electric propulsion
8.1.2.1 Criticality of load characterization
204 8.1.2.2 Electromagnetic compatibility of EP
205 8.1.2.3 Satellite Architecture Aspects
206 8.1.2.4 Assembly, Integration and Test Issues of EP
207 8.1.3 Electron devices (tubes)
8.1.4 Scientific instruments and experiments
8.1.5 EMC aspects
209 9 Hazards and safety
BSI PD CEN/CLC/TR 17603-20-05:2021
$215.11