Shopping Cart

No products in the cart.

ASTM-E228 2016

$40.63

E228-11(2016) Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push-Rod Dilatometer

Published By Publication Date Number of Pages
ASTM 2016 10
Guaranteed Safe Checkout
Categories: ,

If you have any questions, feel free to reach out to our online customer service team by clicking on the bottom right corner. We’re here to assist you 24/7.
Email:[email protected]

ASTM E228-11-Reapproved2016

Historical Standard: Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push-Rod Dilatometer

ASTM E228

Scope

1.1 This test method covers the determination of the linear thermal expansion of rigid solid materials using push-rod dilatometers. This method is applicable over any practical temperature range where a device can be constructed to satisfy the performance requirements set forth in this standard.

Note 1: Initially, this method was developed for vitreous silica dilatometers operating over a temperature range of –180 to 900°C. The concepts and principles have been amply documented in the literature to be equally applicable for operating at higher temperatures. The precision and bias of these systems is believed to be of the same order as that for silica systems up to 900°C. However, their precision and bias have not yet been established over the relevant total range of temperature due to the lack of well-characterized reference materials and the need for interlaboratory comparisons.

1.2 For this purpose, a rigid solid is defined as a material that, at test temperature and under the stresses imposed by instrumentation, has a negligible creep or elastic strain rate, or both, thus insignificantly affecting the precision of thermal-length change measurements. This includes, as examples, metals, ceramics, refractories, glasses, rocks and minerals, graphites, plastics, cements, cured mortars, woods, and a variety of composites.

1.3 The precision of this comparative test method is higher than that of other push-rod dilatometry techniques (for example, Test Method D696) and thermomechanical analysis (for example, Test Method E831) but is significantly lower than that of absolute methods such as interferometry (for example, Test Method E289). It is generally applicable to materials having absolute linear expansion coefficients exceeding 0.5 μm/(m·°C) for a 1000°C range, and under special circumstances can be used for lower expansion materials when special precautions are used to ensure that the produced expansion of the specimen falls within the capabilities of the measuring system. In such cases, a sufficiently long specimen was found to meet the specification.

1.4 Computer- or electronic-based instrumentation, techniques, and data analysis systems may be used in conjunction with this test method, as long as it is established that such a system strictly adheres to the principles and computational schemes set forth in this method. Users of the test method are expressly advised that all such instruments or techniques may not be equivalent and may omit or deviate from the methodology described hereunder. It is the responsibility of the user to determine the necessary equivalency prior to use.

1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.6 There is no ISO method equivalent to this standard.

1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Keywords

contraction; dilatometer; dilatometry; expansion; expansivity; linear thermal expansion; mean coefficient of thermal expansion; push-rod;

ICS Code

ICS Number Code 77.040.99 (Other methods of testing of metals)

DOI: 10.1520/E0228-11R16

ASTM-E228 2016
$40.63