{"id":238837,"date":"2024-10-19T15:36:41","date_gmt":"2024-10-19T15:36:41","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bsi-dd-iec-ts-625582011\/"},"modified":"2024-10-25T10:18:09","modified_gmt":"2024-10-25T10:18:09","slug":"bsi-dd-iec-ts-625582011","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bsi-dd-iec-ts-625582011\/","title":{"rendered":"BSI DD IEC\/TS 62558:2011"},"content":{"rendered":"
IEC\/TS 62558:2011(E) specifies essential characteristics of a phantom and method for the measurement of void-detectability ratio for medical ultrasound systems and related transducers. It is restricted to the aspect of long-term reproducibility of testing results. Medical diagnostic ultrasound systems and related transducers need periodic testing as the quality of medical decisions based on ultrasonic images may decrease over time due to progressive degradation of essential systems characteristics. The TMM (Tissue Mimicking Material) phantom is intended to be used to measure and to enable documentation of changes in void-detectability ratio in periodic tests over years of use. This technical specification establishes: – Important characteristics and requirements for a TMM 3D artificial cyst phantom using anechoic voids – A design example of a 3D artificial cyst phantom, the necessary test equipment and use of relevant computer software algorithms. This technical specification is currently applicable for linear array transducers. A uniformity test prior to void-detectability ratio (VDR) measurement is recommended.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
4<\/td>\n | CONTENTS <\/td>\n<\/tr>\n | ||||||
6<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
8<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
9<\/td>\n | 1 Scope 2 Normative references 3 Terms and definitions <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | 4 Symbols <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | 5 Ambient conditions of measurement with the phantom 6 Specification of TMM 3D artificial anechoic-cyst phantom 6.1 3D-phantom concept 6.2 General phantom specification 6.3 TMM specifications: <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | 6.4 Anechoic targets 6.5 Phantom enclosure 6.6 Scanning surface 6.7 Dimensions <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 6.8 Phantom stability 6.9 Digitized image data <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 7 Principle of measurement using the 3D anechoic void phantom 7.1 General 7.2 Analysis <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | Annex A (informative) \nDescription of construction of an example phantom and test results Figures \n Figure A.1 \u2013 Example of measurement test equipment <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | Figure A.2a) \u2013 Package of TMM slices containing alternating void slices and attenuation slices of polyurethane foam Figure A.2b) \u2013 Holes of different diameters in the void slices allow the use of the phantom with different ultrasound frequencies (1 \u2013 15\u00a0MHz) Figure A.2 \u2013 TMM slices Figure A.3 \u2013 Structure of foam <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | Figure A.4 \u2013 C-images of voids <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | Figure A.5 \u2013 Experimental confirmation of Rayleigh distribution with attenuating TMM <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | Figure A.6 \u2013 Speed of sound in saltwater Figure A.7 \u2013 Phantom with motor drive and two types of adapters <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | Figure A.8 \u2013 B-, D-, C- images and grey scale <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | Figure A.9 \u2013 Illustration of the VDR calculation for a ROI consisting of a single line <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | Figure A.10 \u2013 B-C-D planes <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | Figure A.11 \u2013 Principle of the ultrasound scanning array and beam <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | Figure A.12 \u2013 Schematic of B-D-C planes <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | Figure A.13 \u2013 3D-Phantom images <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | Figure A.14 \u2013 B-D-C images and VDR <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | Figure A.15a) \u2013 Example: Curved Array, 40mm radius, 3,5MHz with good VDR-values. Figure A.15b) \u2013 Example: Curved Array, 40-mm radius, 3,5MHz with poor VDR-values Figure A.15 \u2013 VDR-values <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | Figure A.16 \u2013 Example: Linear array transducer 13\u00a0MHz <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | Figure A.17 \u2013 Interpretation of VDR parameter <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | Figure A.18 \u2013 Explanation of saturation (0-255 grey-scale range) <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | Figure A.19a) \u2013 Voids 2,5\u00a0mm Figure A.19b) \u2013 Voids 3,0\u00a0mm Figure A.19c) \u2013 Voids 4,0\u00a0mm Figure A.19 \u2013 Saturation effect Figure A.20 \u2013 Void spot analysis <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | Figure A.21a) \u2013 Local dynamic curve Figure A.21b) \u2013 Expected envelope of VDR Figure 21 \u2013 Local dynamic range <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | Annex B (informative) \nSystem description <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | Annex C (informative) \nRationale <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | Figure C.1 \u2013 Autocorrelation function <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | Figure C.2a) \u2013 Autocorrelation function at 4,06 cm depth Figure C.2b) \u2013 Autocorrelation function at 9,08 cm depth Figure C.2 \u2013 Autocorrelation function \u2013 dependence on depth Figure C.3 \u2013 Autocorrelation function at 10,94 cm depth <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | Annex D (informative) \nUniformity measurement <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | Figure D.1a) \u2013 Uniformity test with related linear or curved array transducer Figure D.1b) \u2013 Fixed pattern in B-image Figure D.1 \u2013 Uniformity test <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | Figure D.2a) \u2013 B-D-C image and fixed pattern in C-image Figure D.2b) \u2013 Grey scale display of full array Figure D.2 \u2013 Uniformity test \u2013 Additional features <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | Figure D.3 \u2013 Linear transducer with reference tape <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | Figure D.4 \u2013 Interpretation of simulated transducer failure when half of the probe is covered by five layers of 50-mm fabric tape <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | Figure D.5 \u2013 Disconnected elements, example with linear transducer <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | Figure D.6 \u2013 Example with curved array transducer and reference tape <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Ultrasonics. Real-time pulse-echo scanners. Phantom with cylindrical, artificial cysts in tissue-mimicking material and method for evaluation and periodic testing of 3D-distributions of void-detectability ratio (VDR)<\/b><\/p>\n |